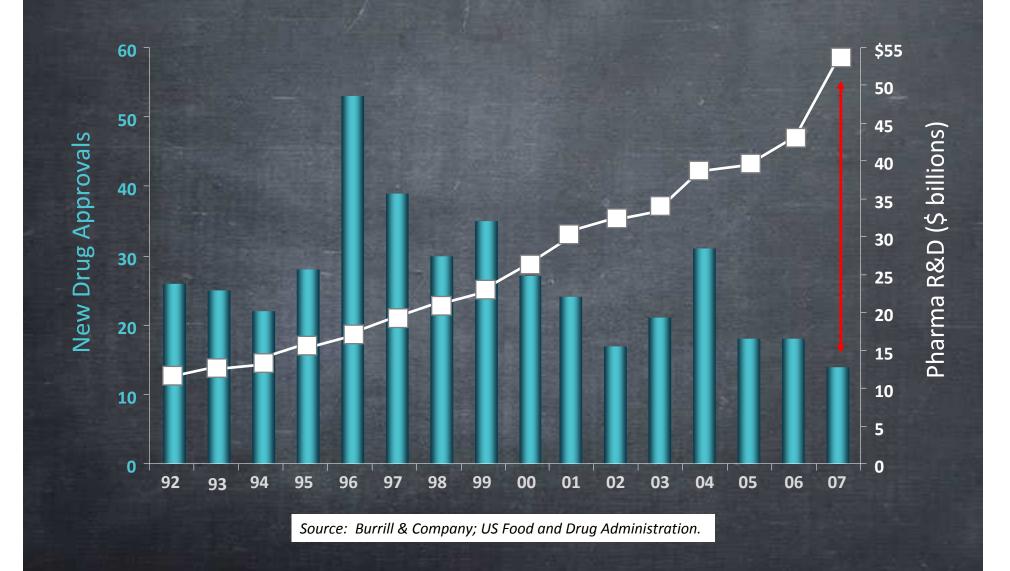


DDMoRe Workshop


Lutz Harnisch, Benjamin Ribba, Maciej Swat, Richard Kaye, Natallia Kokash & Nick Holford

On behalf of the DDMoRe consortium

Therapeutic Innovation

Therapeutic innovation is challenging

Drug development decision makers **rely** on the best rational to select drug candidates, targets, trial designs, dose regimens, patient populations and suitable endpoint measures

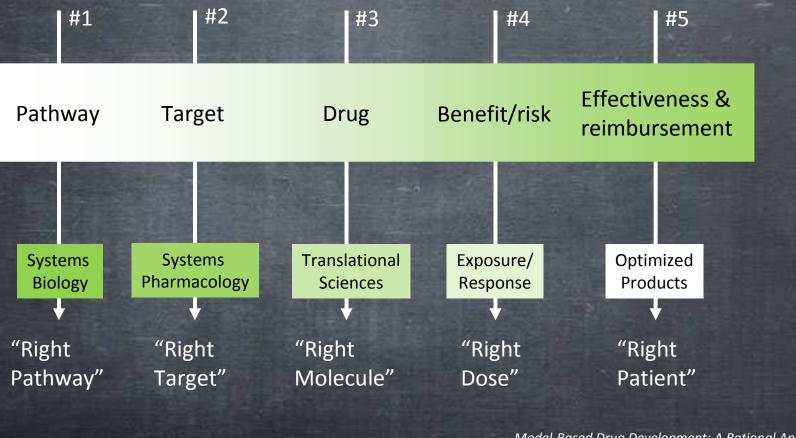
Therapeutic innovation is challenging

A lack of informed decision making can have detrimental effects to patients, choice of the wrong development program, and potentially induce huge financial losses

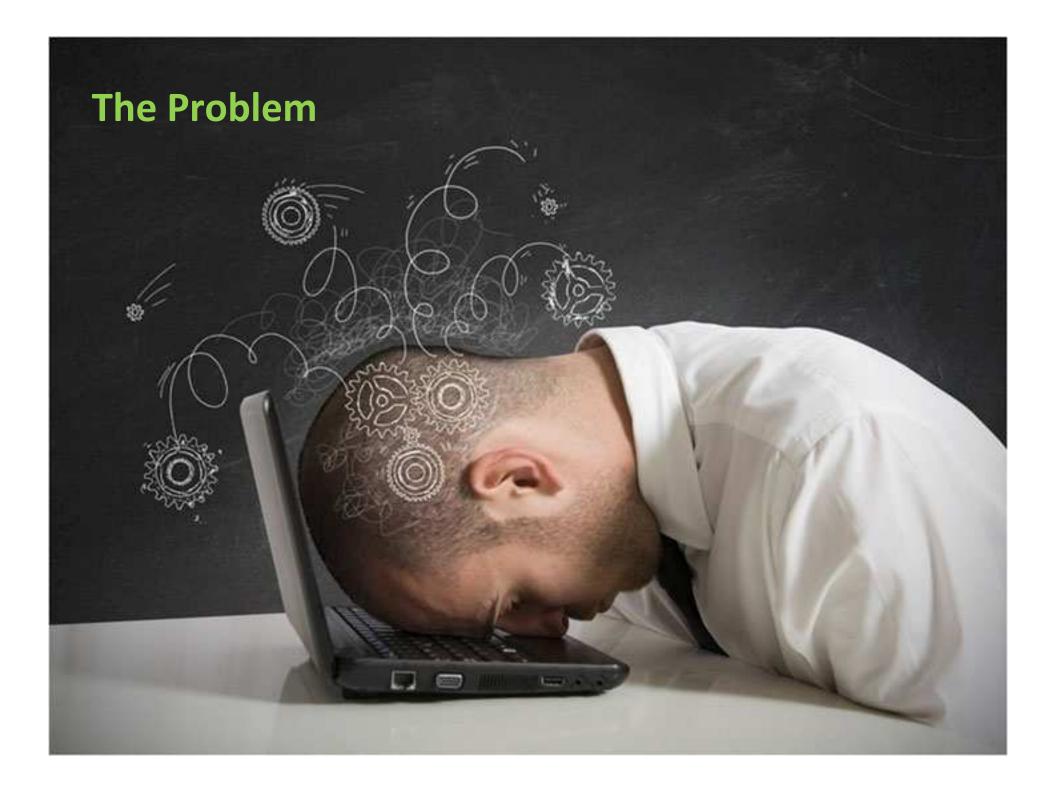
Therapeutic innovation is challenging

Society pushes for more transparency and clinical trial data sharing, opening the door for aggressive competition

Integrative tools


Modelling and Simulation (M&S)

as one of the core technology of pharmaceutical industry, is essential in performing such knowledge integration, providing through inference the quantitative basis for better informed decision making


Model-based drug development

Integrative tools

Model-based drug development

Model-Based Drug Development: A Rational Approach to Efficiently Accelerate Drug Development CPT 2013, Milligan PA, et al

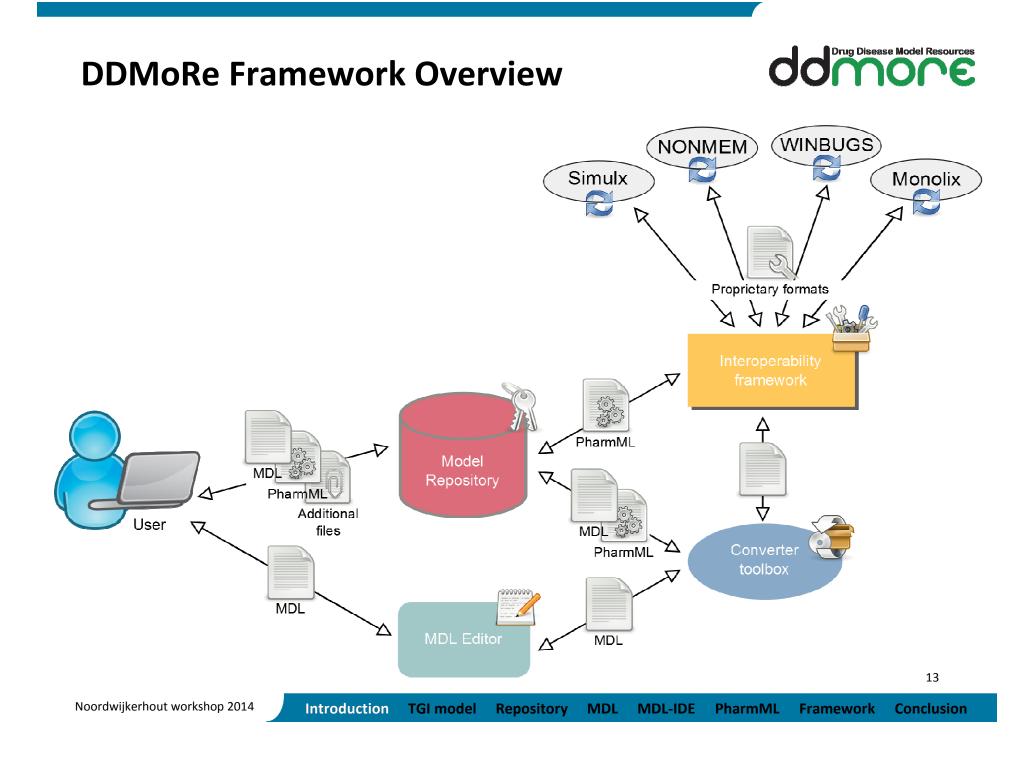
The Problem

How do you find disease or drug models that might be useful for your analysis?

How can you be sure that published models are relevant? How can you be sure that published models work (are reproducible)?

If code is available in software X, but you use software Y, how do you translate the model and ensure that the result is equivalent?

How much of your time is lost by working in a non-integrated environment?

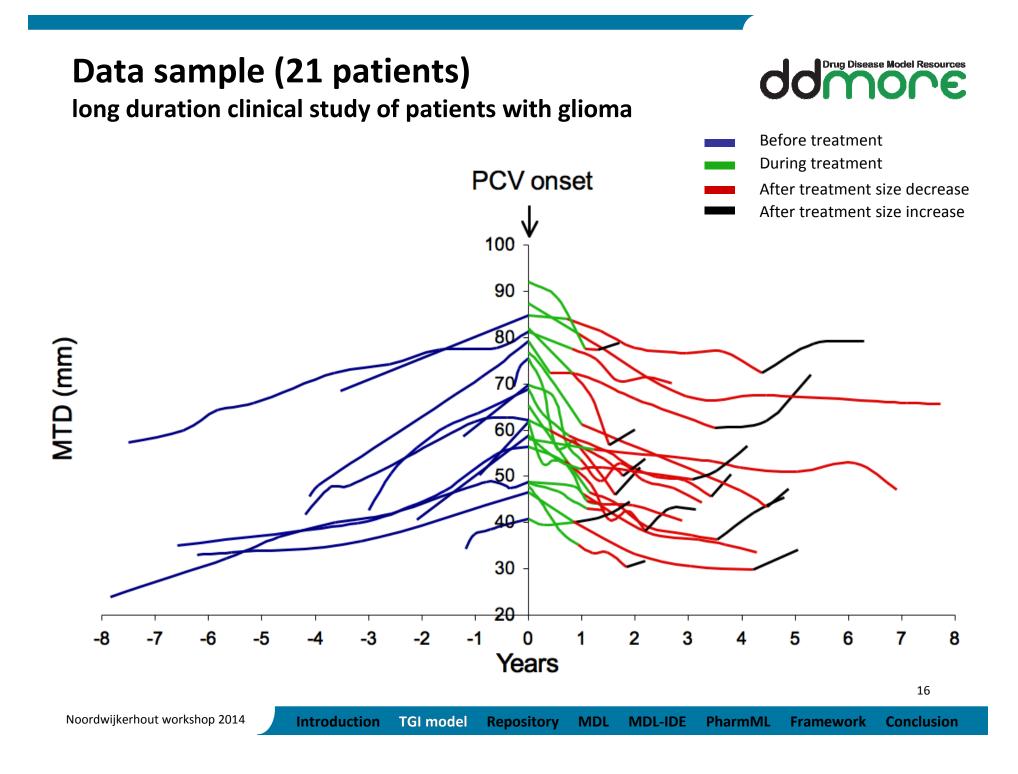


March 2011 – February 2016

The Solution

- Benjamin Ribba: Clinical problem, Tumour Growth Inhibition model (TGI model)
- Maciej Swat: How to store published models and associated details (Repository)
- *Nick Holford :* How to create, review, extend and combine published models using a common Modelling Description Language (MDL)
- Natallia Kokash: Construct models, check syntax, perform tasks within an Integrated Development Environment (MDL-IDE)
- Maciej Swat: Provide standards for model inputs and outputs using a software interchange standard language to allow translation between target modelling tools, Pharmacometrics Markup Language (PharmML)
- *Richard Kaye*: Demonstration on how to solve the clinical problem using a possible workflow via the DDMoRe framework (Framework)

Real life example


This DDMoRe satellite Workshop will demonstrate the model repository, languages and tools developed by the Consortium using as an example:

a tumour growth inhibition (TGI) model for the treatment of low-grade glioma using chemotherapy or radiotherapy

Low-grade glioma

- Low-grade gliomas (WHO grade II) are diffusely infiltrative brain tumors affecting young adults
- Annual number of pediatric and adult LGG cases diagnosed in the U.S. 1,800
- Tumor grows slowly: 1-2 mm/year, monitored with periodic MRI
- Patients can be asymptomatic and remained untreated for years
- Standard of care **PCV** (Procarbazine, CCNU, Vincristine)
 - chemotherapy regimen is given every 6 weeks for a maximal duration of 6 cycles
 - Prolonged response in the majority of patients

Modelling and Simulation

The use of existing clinical data to model tumors' dynamic response to antitumor treatments is a promising approach toward improving treatment efficacy and accelerating the development of antitumor drugs.

Clinical questions

- Can a model be formulated to propose explanations of the prolonged-response phenomenon?
- Can the PCV scheduling be changed to improve the treatment efficacy?
 - Aim is a further prolonged treatment response

Conclusion

Worked Example

- The study goal is to understand both the biology of tumour growth and how drug treatments modify growth as reflected in tumour size. Description of the data requires a mixed effect modelling approach.
 - The original report of the model was developed using Monolix.

The Story

- A mixed-effect model has been developed to characterize tumor size dynamics in glioma patients treated with PCV chemotherapy
- Herein, we illustrate the potential of the DDMoRe framework to:
 - Browse the DDMoRe Model Repository
 - Estimate parameters of the brain tumor mixed-effect model
 - Simulate (explore) the model to propose an explanation of the prolonged response phenomenon
 - Identify a modified PCV regimen scheduling

Publication

Clinical Cancer

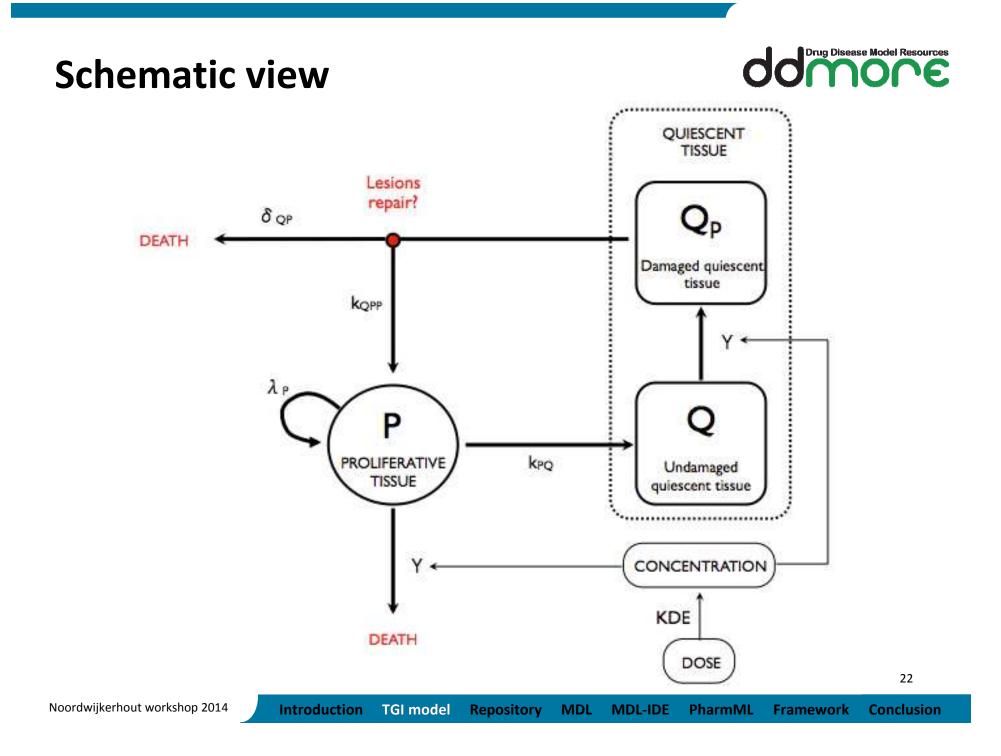
Research

Cancer Therapy: Clinical

A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy

Benjamin Ribba¹, Gentian Kaloshi⁶, Mathieu Peyre², Damien Ricard⁷, Vincent Calvez¹, Michel Tod^{3,4}, Branka Čajavec-Bemard¹, Ahmed Idbaih⁶, Dimitri Psimaras⁶, Linda Dainese⁸, Johan Pallud⁹, Stéphanie Cartalat-Carel², Jean-Yves Delattre⁶, Jérôme Honnorat^{2,4,5}, Emmanuel Grenier¹, and François Ducray^{2,4,5}

Abstract

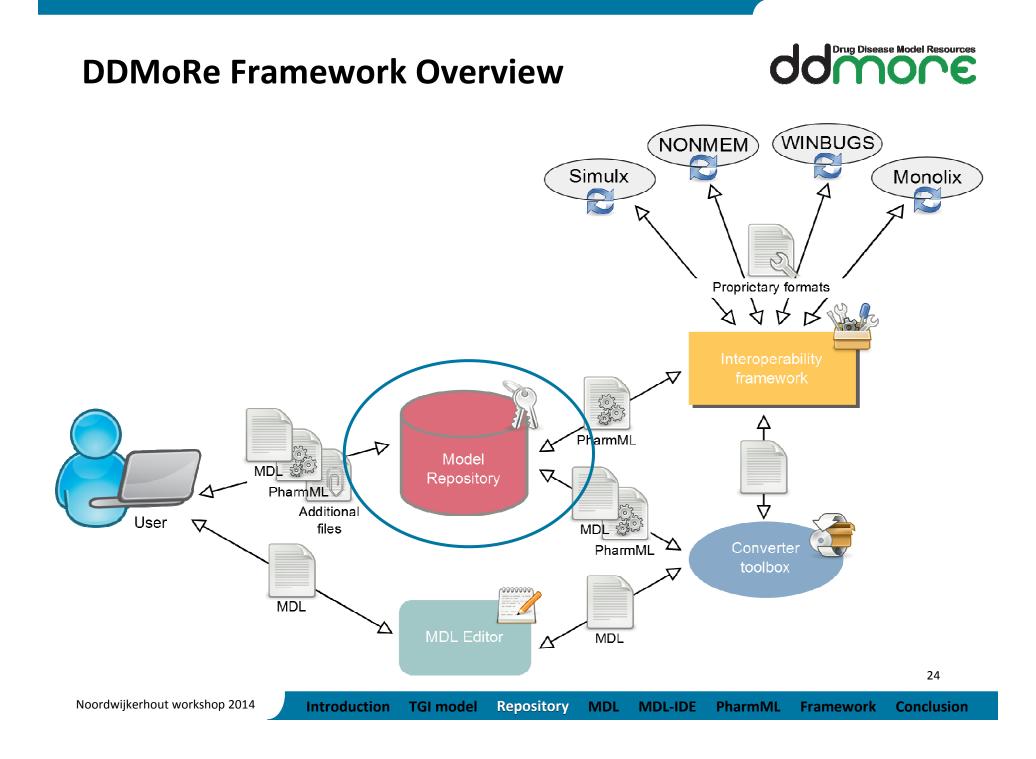

Purpose: To develop a tumor growth inhibition model for adult diffuse low-grade gliomas (LGG) able to describe tumor size evolution in patients treated with chemotherapy or radiotherapy.

Experimental Design: Using longitudinal mean tumor diameter (MTD) data from 21 patients treated with first-line procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-I-nitrosourea, and vincristine (PCV) chemo-therapy, we formulated a model consisting of a system of differential equations, incorporating tumor-specific and treatment-related parameters that reflect the response of proliferative and quiescent tumor tissue to treatment. The model was then applied to the analysis of longitudinal tumor size data in 24 patients treated with first-line temozolomide (TMZ) chemotherapy and in 25 patients treated with first-line radiotherapy.

Results: The model successfully described the MTD dynamics of LGG before, during, and after PCV chemotherapy. Using the same model structure, we were also able to successfully describe the MTD dynamics in LGG patients treated with TMZ chemotherapy or radiotherapy. Tumor-specific parameters were found to be consistent across the three treatment modalities. The model is robust to sensitivity analysis, and preliminary results suggest that it can predict treatment response on the basis of pretreatment tumor size data.

Condusions: UsingMTD data, we propose a tumor growth inhibition model able to describe LGG tumor size evolution in patients treated with chemotherapy or radiotherapy. In the future, this model might be used to predict treatment efficacy in LGG patients and could constitute a rational tool to conceive more effective chemotherapy schedules. *Clin Cancer Res; 1–10. ©2012 AACR.*

Noordwijkerhout workshop 2014



Parameters

23

- System of 4 compartments written as ordinary differential equations
- 6 parameters and 2 initial conditions (P0 and Q0)
 - λP (growth rate) and kPQ (quiescence rate) only regulates tumor growth in the absence of treatment
- The model was developed within a mixed-effect (population) context
 - 8 fixed parameters and 7 inter-individual variability parameters
- SAEM (with Monolix and NONMEM) was used to estimate parameters

DDMoRe Model Repository

- Provides a collaborative model development platform
- Offers secured and versioned storage of models, data and metadata
- Facilitates dissemination and reuse of models
- Makes content available to users and tools
- Advocates the use of standard formats

Conclusion

Framework

Content – Library of disease models

- Selection of publicly-available models from key therapeutic areas
 - Diabetes
 - Oncology
 - Other diseases e.g. neurodegenerative, infectious
- Available models and data are encoded using standard formats developed within DDMoRe

Browsing content

27

				Register	.ogin	Q
Odmore Model Repository	BROWSE	IT FEEDBACK				
Models						
					10 20 50	
					10 20 50	
Name		Format	Submitter	Submitted	Modified -	
Name Hamren - CPT 2008		Format PharmML	Submitter UNIPV	Submitted 2014/01/24	tool wat to	
					Modified ~	
Hamren - CPT 2008		PharmML	UNIPV	2014/01/24	Modified → 2014/04/05	

- Browsing using different classifications
 - Therapeutic areas e.g. oncology
 - Substance of interest e.g. drug
- Sorting based on different orders alphabetical, therapeutical

Help

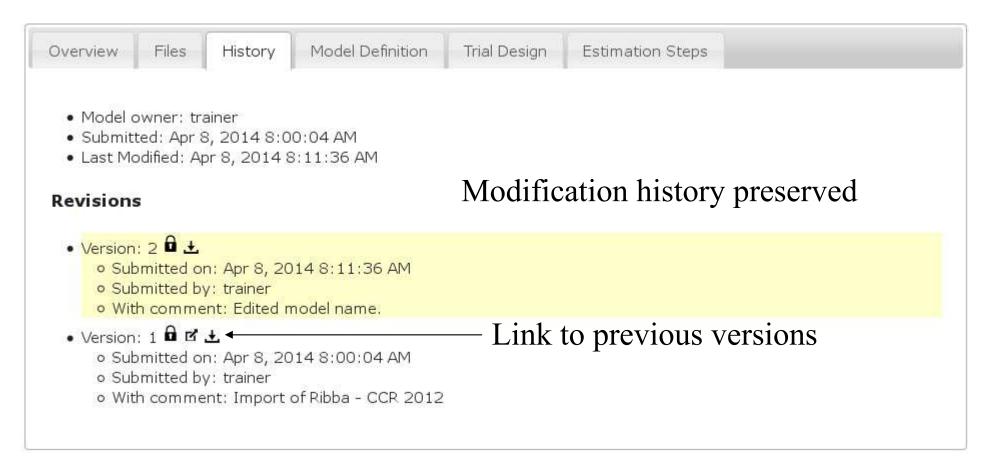
Building an effective search

- Information about the model is expressed in a knowledge representation format which can be understood by computers
 - e.g. the therapeutic area of this model is oncology
- The semantic context of model entities is expressed using unambiguous external references
 - glioma is a type of cancer

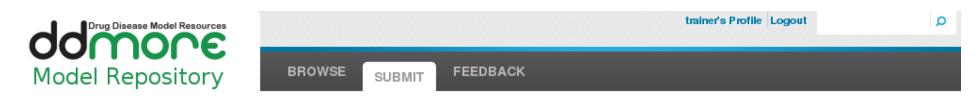
Model overview

Brief, but descriptive title

Ribba - CCR 2012 Tumour Growth Inhibition


Model display – files

Model display – history


Display of models in standard formats

Overview	Files	History	Model Definition	Trial Design	Estimation Steps
Independe	ent varia	ble time			
Functio	n Defi	nitions			
constantE	rrorMode	l(a) = a			
Structu	ral Mo	del <i>sm1</i>			
Variable d	efinitions	5			
$\frac{\mathrm{dQ}}{\mathrm{dtime}} = \left(\left(\right. \right)$	LAMBD KPQ \times H (GAMM	$AP \times (PT)$ PT - (GA) $A \times (C \times (C))$	$MMA \times (C \times (KD))$	$(\mathbf{E} \times Q))))$	$\mathbf{P} ight) - \left(\left(\mathbf{KPQ} imes \mathbf{PT} ight) - \left(\mathbf{GAMMA} imes \left(C imes \left(\mathbf{KDE} imes \right) - \left(\mathbf{DELTAQP} imes \mathbf{QP} ight) ight)$

Model submission

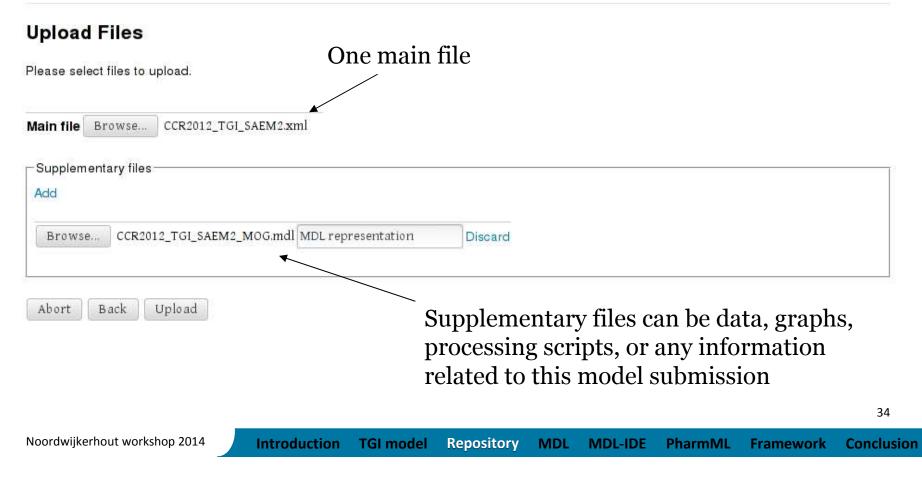
Submit a model

Submission Guidelines

You are about to submit a new model to the DDMoRe Model Repository. We accept submissions in PharmML version 0.2.1 and MDL 5.0.8.

In your submission, you may also choose to provide any additional files considered relevant to the model, which may be labelled with a description.

Abort Continue

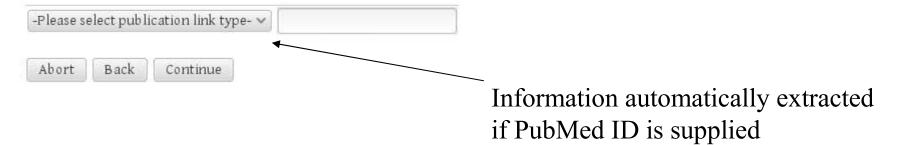

Learn about the supported formats

Model submission

Specify the files you wish to upload

Submit a model

Model submission



Submit a model

Enter Publication Link

Enter publication reference

Please provide a publication reference if available. Publication links can be from any of the sources listed in the drop down box (e.g. pubmed, doi, isbn). Alternatively, select 'custom' to provide any other URL. Leave null to continue without linking the model to a publication.

Sharing

- Models can be shared with other modellers
- Differentiate between
 - collaborators that can update the model, and
 - collaborators that can only see the model

Share model

Noordwijkerhout workshop 2014	Introduction	TGI mod	lel Repository	MDL MD	L-IDE I	PharmML	Framework	Conclusio
								36
				Mihai Glont	V		Remove	
Add	Save			1.1000				
Mihai Gl	ont	9		Ribba	2	V	Remove	
Name		Read	Write	Name	Read	Write		
Add No	Add New Collaborator				Collaborators			
			25 65					

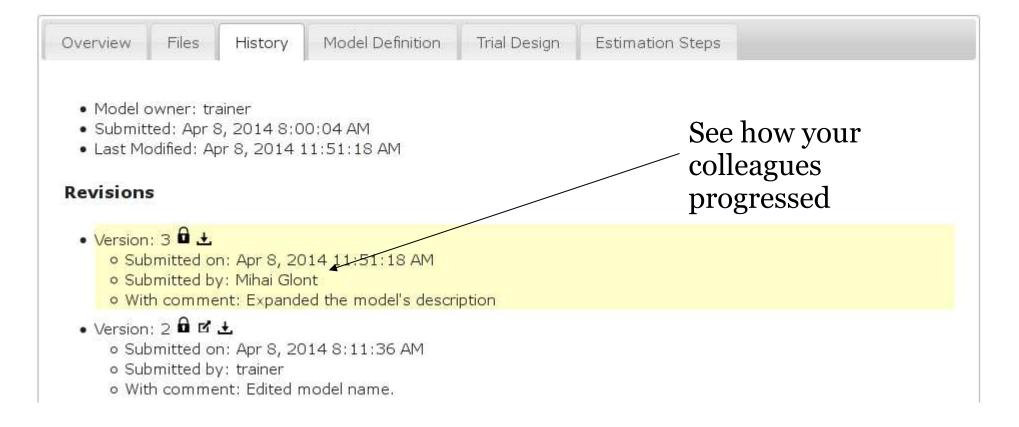
Drug Disease Model Resources Showing your model to others The model can Useful for feedback and review purposes be viewed and retrieved, but Ribba - CCR 2012 Tumour Growth Inhibition not updated Model Definition Trial Design Estimation Steps Overview Files History Model Description: A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy. PharmML (0.2.1) Format: A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. * 12 F Ducray, JY Delattre, V Calvez, D Ricard, L Dainese, B Cajavec-Bernard, J Honnorat, E Grenier, A Publication: Idbaih, D Psimaras, G Kaloshi, J Pallud, B Ribba, M Tod, M Peyre, S Cartalat-Carel Clinical cancer research : an official journal of the American Association for Cancer Research, 9/2012, Volume 18, Issue 18, pages: 5071-5080 Contributors: trainer 37

Noordwijkerhout workshop 2014

Updating models collaboratively

Ribba - CCR 2012 Tumour Growth Inhibition

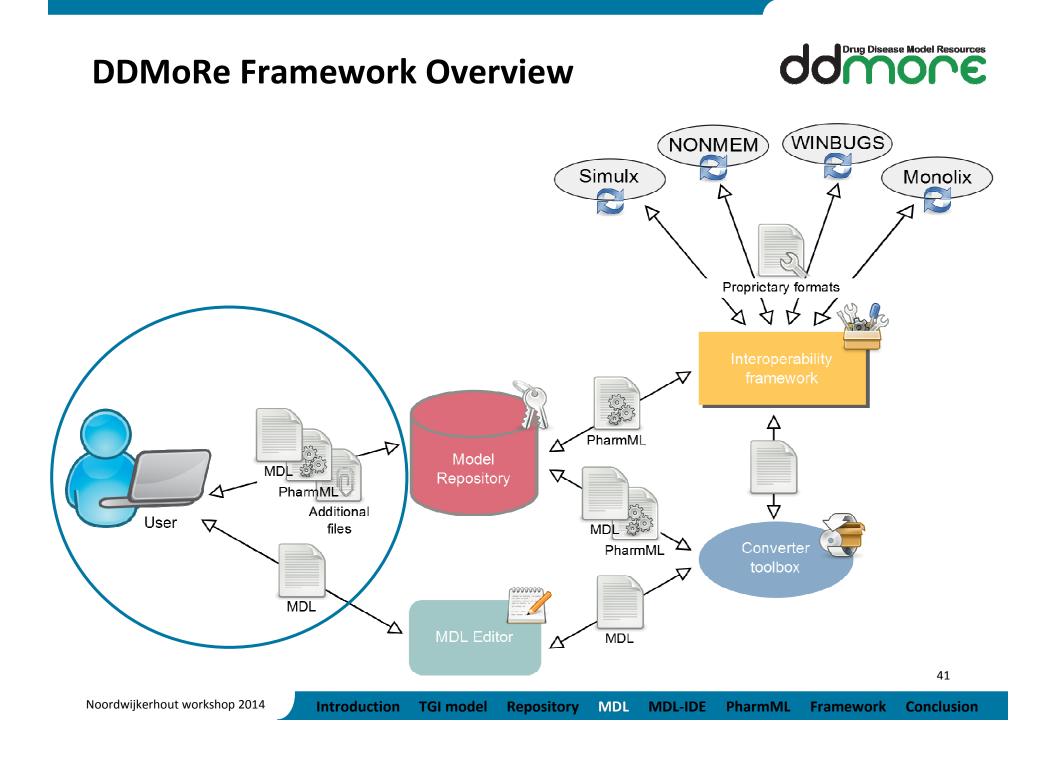
Overview F	iles History	Model Definition	Trial Design	Estimation Steps		
Model Descrip	ick up from where you left off					
		odel for adult diffuse otherapy or radiother		nas (LGG) able to describe tumor size evolution in		
Format:	PharmML (0.2.	1)				
Publication:	A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. ㆍ 면 B Cajavec-Bernard, B Ribba, A Idbaih, D Ricard, S Cartalat-Carel, E Grenier, M Peyre, F Ducray, J Pallud, V Calvez, J Honnorat, M Tod, G Kaloshi, L Dainese, JY Delattre, D Psimaras <i>Clinical cancer research : an official journal of the American Association for Cancer Research</i> , 9/2012, Volume 18, Issue 18, pages: 5071-5080					
Contributors:	Mihai Glont, tra	iner		38		


± \$ 0

Updating models collaboratively

39

Ribba - CCR 2012 Tumour Growth Inhibition



Noordwijkerhout workshop 2014

Model Repository

- The DDMoRe Repository is a public resource for disseminating models encoded in standard formats
- Models submitted to the DDMoRe Repository can be developed collaboratively
- Models from the DDMoRe Repository can be executed using other tools developed in the Consortium
- Models from the DDMoRe Repository can be edited using MDL IDE

Target Languages Tumour Growth Inhibition (TGI) Solution or Problem?

NONMEM DESCRIPTION: CCR2012_TGI_p5p2.mixtran DATA: ATA: path = "%MLXPROJECT%../Data/", file ="dataLGG_PCV_nh2_nohead.csv" headers = {ID,TIME,AMT,Y,MDV,EVID}, \$THETA Parameters for PCV chemotherapy study from CCR2012 n=logNormal, iiv= listribution=logNormal, iiv=yes}, distribution=logNormal, iiv=yes}, (distribution=logNormal, iiv=yes) = { distribution=logNormal, iiv=yes KQPP = {distribution-AMBDAP = {distribut PT0 = {distribution=logI Q0 = {distribution=logN STRUCTURAL_MODEL: file = "mlxt:TGI". te reported in CCR2012) path = "%MLXPROJECT%", utput = (PSTAR) BSERVATIONS VERE settings globalSettings={ withVariance=no, settingsAlgorithms="%MLXPROJECT%/p5p2_alg resultFolder="%MLXPROJECT%/results_p5p2"}, \$SUBR ADVAN13 TOL=6 \$MODEL SMODEL COMP (C) COMP (PT) COMP (Q) COMP (QP) PT0=THETA(1)*EXP(ETA(1)) Q0=THETA(2)*EXP(ETA(2)) LAMBDAP=THETA(3)*EXP(ETA(3)) KPQ=THETA(4)*EXP(ETA(4)) KQPP=THETA(5)*EXP(ETA(5)) DELTAQP=THETA(6)*EXP(ETA(6)) GAMA=THETA(7)*EXP(ETA(7 KDE=THETA(8)*EXP(ETA(8)) A_0(2)=PT0 A_0(3)=Q0 isherInformation DPSTAR=PT+Q+QP DADT(1) = -KDE*C ; conc in KPD effect compartment DADT(2) = LAMBDAP*PT*(1-DPSTAR/K) + KQPP*QP - KPQ*PT - GAMA*PT*KDE*C ; proliferating =(PT0.Q0.LAMBDAP.KPQ.KQPP.DELTAQP.GAMA.KDE) tells DADT(3) = KPQ*PT - GAMA*Q*KDE*C ; quiescent cells DADT(4) = GAMA*Q*KDE*C - KGPP*QP - DELTAQP*QP ; damage quiescent cells parar PK: PSTAR=A(2)+A(3)+A(4) Y=PSTAR + THETA(9)*ERR(1) \$TABLE ID TIME Y ONEHEADER NOPRINT FILE=tgi.fi

Monolix

coptimize value="0"/>
<ldtest_is value="10"/>
<ldot_fixed value="5"/>
<ldot_fixed value="5"/>
<ldot_fixed value="5"/>
<ldot_ised="5"/>
<ldot_ised="5"/>
dot_ised="5"/>
<logLikelihood>
cpopulationParameters>
<kdig value="50"/>
<kdig value="5"/> <kdisp value="50"/> <K0 value="5"/> <iop_sa value="1"/> <coef_sa value="0.95,0.95"/> <rK2 value="0.1"/> <nu value="2,0,2,2"/> <rmcmc value="0.3"/> <fr_rmcmc value="0.4"/> <vna value="500.200"/> <va value="0,1"/> <va value="0,1"/> <niter_mcmc value="20"/? <niter_mcmc value="20"/: <iop_Kauto value="1,1"/> <lK value="100,50"/> <dU value="5"/> <nmc value="1"/> <kde0 value="17>
<kde0 value="25"/>
<maxiter_initEta value="50
<no_const_error value="5"
<no_autocorr value="5"
<optim_iter value="20"/> <freq_error_c value="20"/> <rG value="0.5"/> <DGamma2_phi0_ini value= <sign_df value="10"/> <sign_df value="10">
<strategy value="21>
<niter_cov value="4">
<no_mixture value="4">
<no_mixture value="4">
<no_mixture value="4">
<no_mixture value="4">
<so_mixture value="10">
<sd_ratio value="10">
<sd_ratio value="4">
</sd_ratio value="4"
</sd_ratio value="4">
</sd_ratio value="4"
</s ="0.85"/ <maxIterForTimes value <iop_nmc value="false" </populationParameters <individualParameters> </didividualParameters>
<kdisp value="50"/>
<nu value="2,0,2,2"/>
<fr_rmcmc value="0.4"/>
<rmcmc value="0.3"/>
<L_mcmc value="50"/> mcmc value="50"/> <r_mcmc value="0.05"/> <mxt_iter value="100"/> <take_eta_ratio value="0.5"/> <nb_max_simulated_eta value="50"/> chb_max_simulated_eta value= 50
ctake_prior_iterations value="11">
ctake_prior_ratio value="0.1"/>
cnb_max_simulated_theta value="1
ctimeEstimator value="auto"/>
ctempi_hmm value="10"/> <fisherinformationMatrix> <timeEstimator value="au <nu value="2,0,2,2"/> <fr_rmcmc value="0.4"/> <mbox/structure="0.4"/> <nbox/structure="0.4"/> <nbox/structure="0.4"/> <nbox/structure="0.4"/> <L_mcmc c value="50"/ alue="5"/> <nktest value="1"/> <Nsim value="100000"/-<reldiff value="0.001"/-</fisherInformationMatri <max_vectorsize value="Int <Knpde value="500"/> <Knpde_ode value="100"/> <Kvpc value="100"/> <Kvpc_ode value="50

Drug Disease Model Resources nore

42

ddr

Noordwijkerhout workshop 2014

\$PK

\$DES

C=A(1) PT=A(2) Q=A(3) QP=A(4)

SEPROR

Modelling Description Language Overview

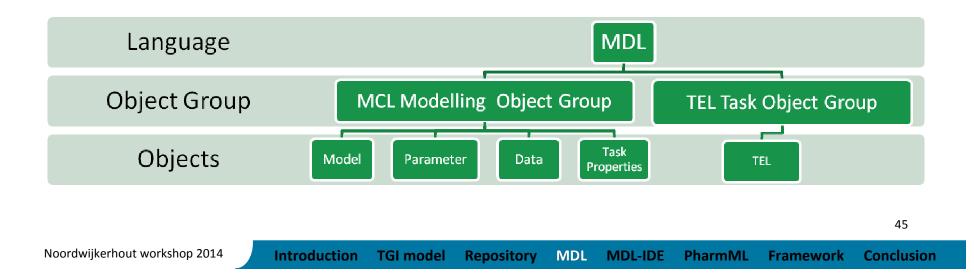
- MDL A New Vision for Modelling
 - Same code for multiple execution targets (e.g. NONMEM, Monolix)
 - Independent model, data, parameter, task objects
- Object Groups
 - Modelling Object Group (MOG)
 - TEL Object Group (TOG)
- MDL Example: The TGI model
 - Demonstrate the objects and their components
- Integration of Object Groups with MDL-IDE and Repository

Modelling Description Language Design Objectives

MDL

- Target independent model code
 - Usable with different targets (e.g. NONMEM, Monolix)
- Independent model, data, parameter, task objects
 - Plug & Play

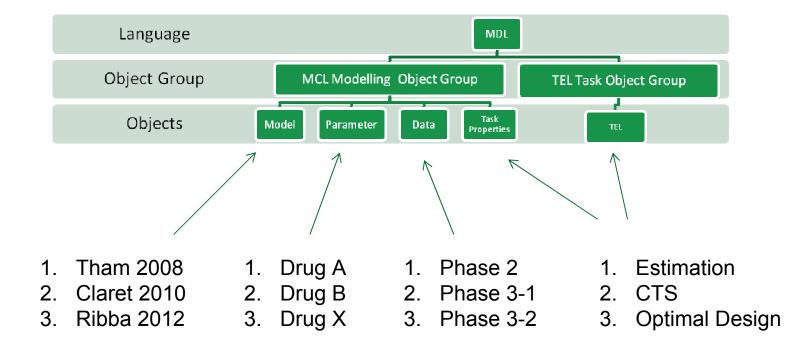
Noordwijkerhout workshop 2014

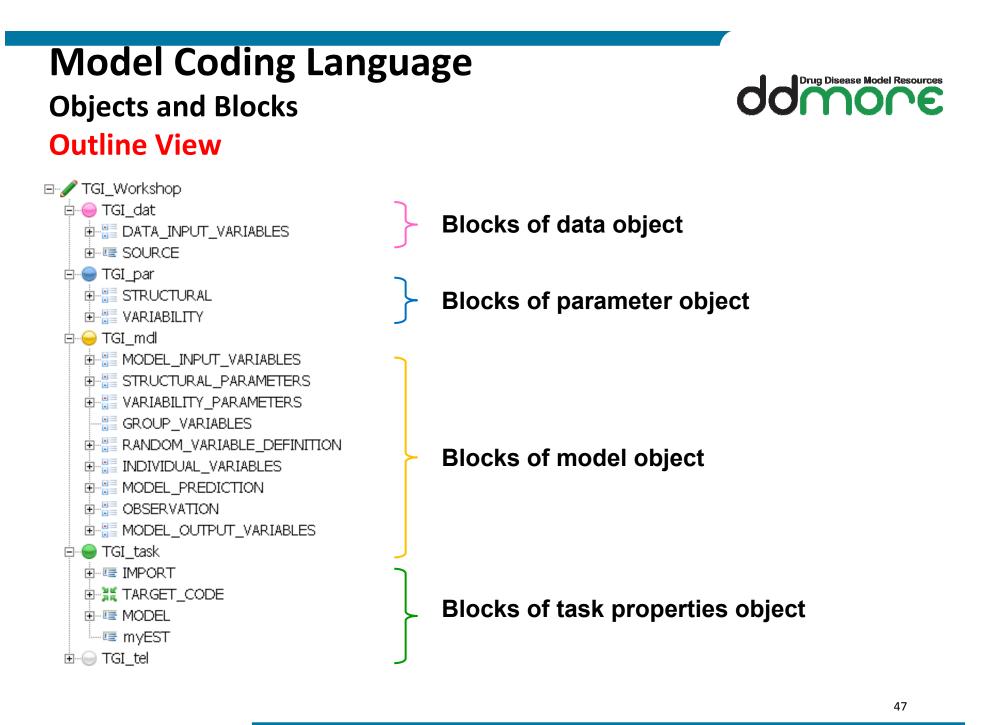

Modelling Description Language Object Groups

The MDL is divided into two object groups

Modelling Object Group: The Model Coding Language (MCL) describes the model, data, parameters and task properties.

Task Object Group: The Task Execution Language (TEL) describes the task execution steps.

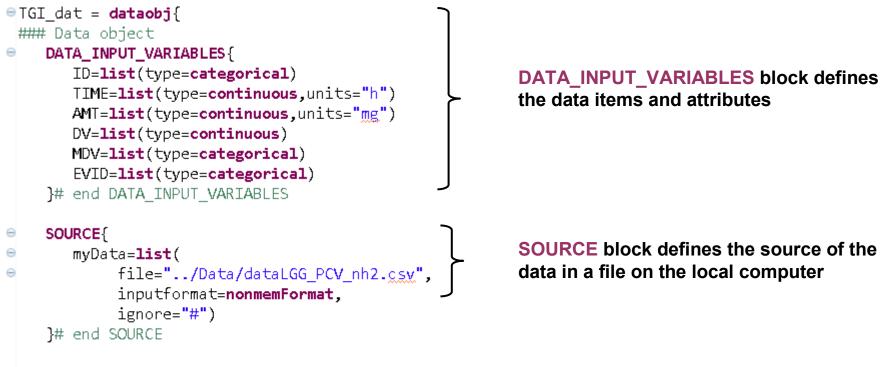



Modelling Description Language Plug & Play Objects

Introduction

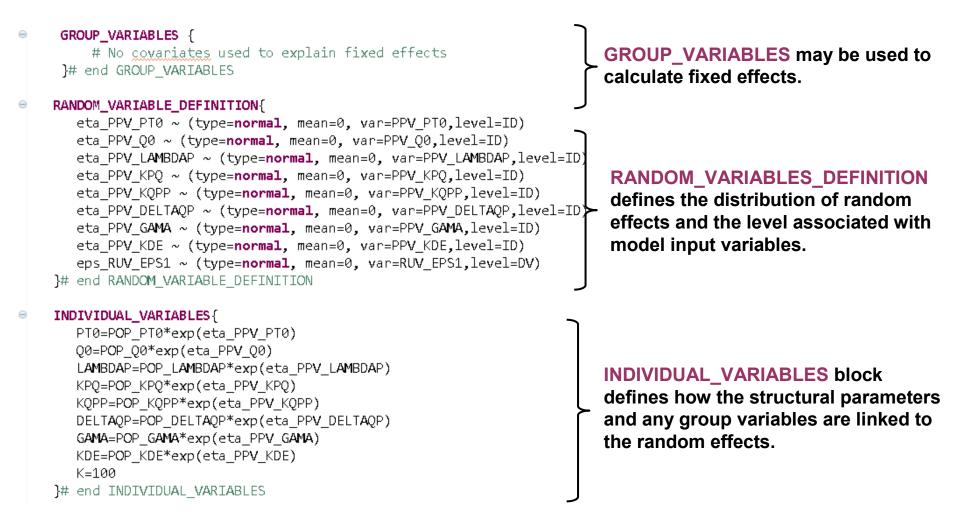
TGI model

Model Coding Language Blocks, Variables, Lists, Attributes Data Object Outline


The DATA_INPUT_VARIABLES block describes the data variables that may be used by a modelling task. Each variable has a name (e.g. ID) and a list of attributes.

The SOURCE block defines where the data is located (e.g. in a file, from a URL, created by an R script or coded inline)

Model Coding Language Blocks, Variables, Lists, Attributes Code defining the Data Object



} # end data object

Each data variable may be described with optional type and units. The list keyword is used to group the attributes associated with the data variable. These attributes are used to check data integrity and match the data with model object requirements.

MCL – Flexibility The model object Define random effects - Alternative 1

MCL – Flexibility The model object Define random variables - Alternative 2

GROUP_VARIABLES {

 Θ

No covariates used to explain fixed effects
}# end GROUP_VARIABLES

RANDOM_VARIABLE_DEFINITION{

No random effect variables defined
}# end RANDOM_VARIABLE_DEFINITION

INDIVIDUAL_VARIABLES{

```
PT0 ~ (type=logNormal, median=POP_PT0, var=PPV_PT0,level=ID)
Q0 ~ (type=logNormal, median=POP_Q0, var=PPV_Q0,level=ID)
LAMBDAP ~ (type=logNormal, median=POP_LAMBDAP, var=PPV_LAMBDAP,level=ID)
KPQ ~ (type=logNormal, median=POP_KPQ, var=PPV_KPQ,level=ID)
DELTAQP ~ (type=logNormal, median=POP_KQPP, var=PPV_KQPP,level=ID)
GAMA ~ (type=logNormal, median=GAMA, var=PPV_GAMA,level=ID)
lnKDE ~ (type=logNormal, median=KDE, var=PPV_KDE,level=ID)
K=100
}# end INDIVIDUAL VARIABLES
```

INDIVIDUAL_VARIABLES Distribution of individual variables is defined without using explicit random effect variables.

MCL – External Functions The model object ODEs and Model Libraries


```
MODEL_PREDICTION(
    ODE(
        DPSTAR=PT+Q+QP
        C=ode(deriv= -KDE*C) # conc in KPD effect compartment
        PT=ode(deriv= LAMBDAP*PT*(1-DPSTAR/K) + KQPP*QP - KPQ*PT - GAMA*PT*KDE*C , init=PTO)
        Q=ode(deriv= KPQ*PT - GAMA*Q*KDE*C , init=Q0) # quiescent cells
        QP=ode(deriv= GAMA*Q*KDE*C - KQPP*QP - DELTAQP*QP) # damage quiescent cells
    }
    LIBRARY(
        amount=nmadvan(model=13)
    }
    PSTAR=PT+Q+QP
}# end MODEL PREDICTION
```

MODEL_PREDICTION is where calculations are defined using group and individual variables ("parameters")

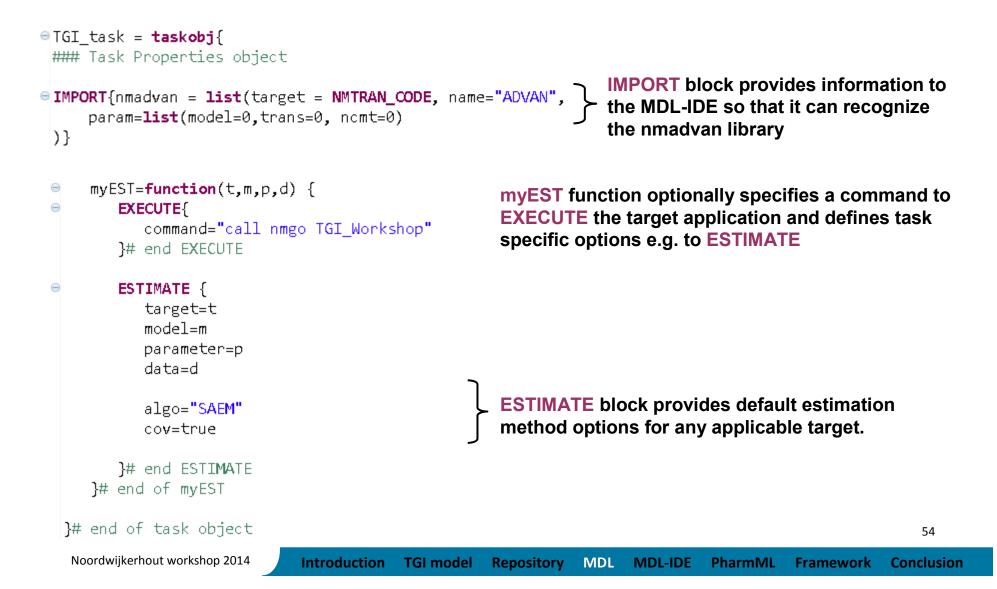
LIBRARY sub-block supplies predictions from external libraries e.g. NONMEM PREDPP, Monolix PKPD

MCL – Flexibility The model object Residual Error

Prediction and Random Effects - Alternative 1

OBSERVATION {

Θ


Y = PSTAR+RUV_SD*eps_RUV_EPS1 }# end OBSERVATION **OBSERVATION** block links individual model prediction (PSTAR) and random effect variables for residual error

Observation Distribution - Alternative 2

```
OBSERVATION{
    Y ~ (type=Normal, mean=PSTAR, variance=RUV_EPS1,level=DV)
}# end OBSERVATION
```

OBSERVATION block defines distribution of observations

MCL – Flexibility The task properties object Default Estimation Options – Alternative 1

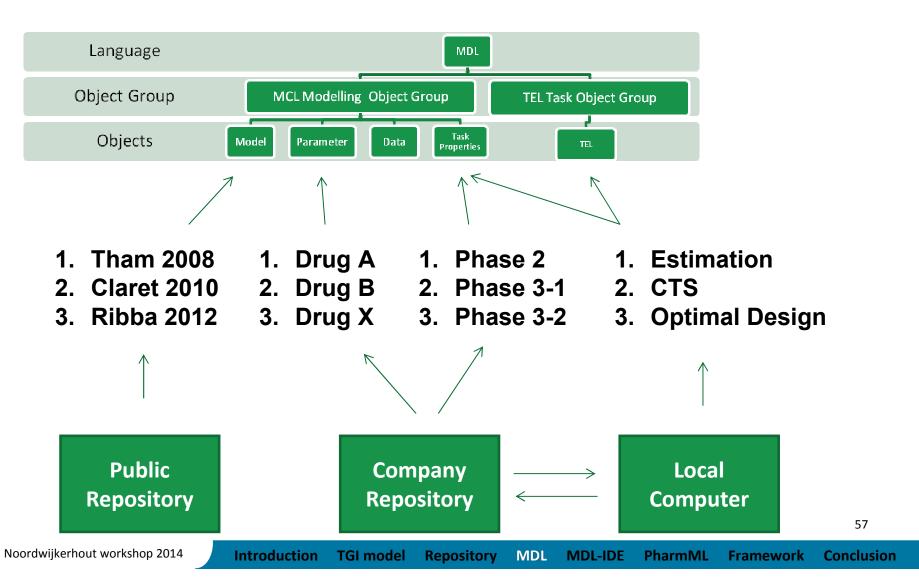
Drug Disease Model Resources

MCL – Flexibility The task properties object Direct control of target – Alternative 2

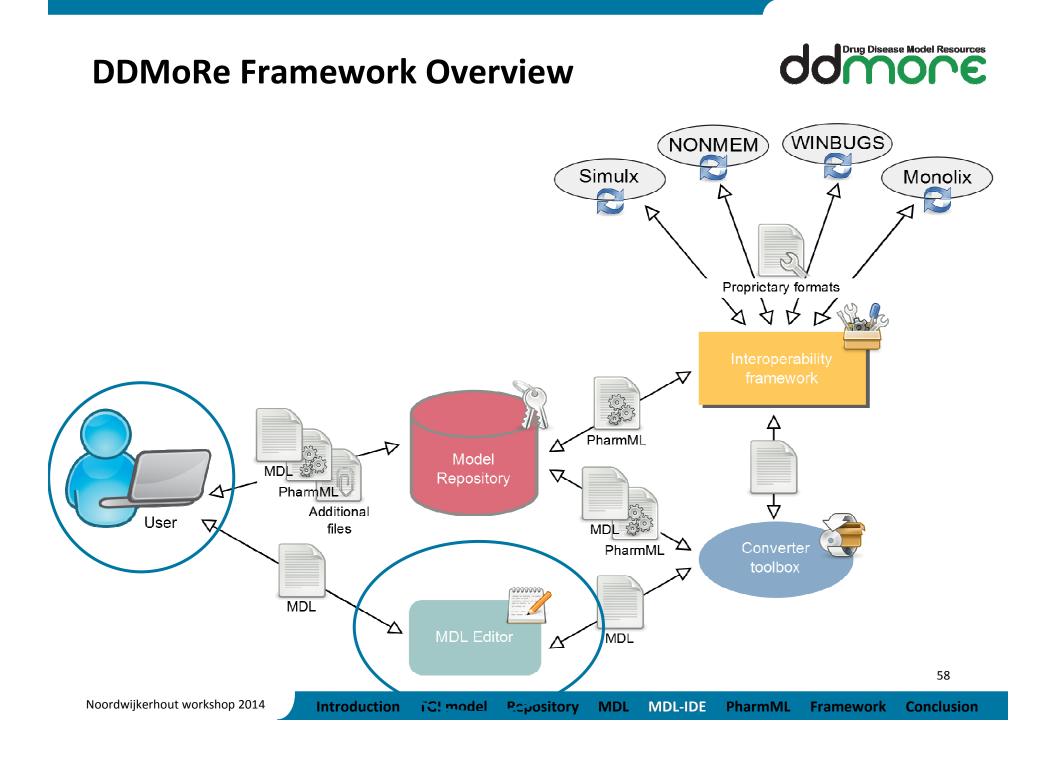

```
myEST=function(t,m,p,d) {
Θ
Θ
       EXECUTE{
          command="call nmgo TGI Workshop"
       }# end EXECUTE
Θ
       ESTIMATE [
          target=t
          model=m
          parameter=p
          data=d
                                                                    TARGET CODE blocks specify
GTARGET_CODE(target=NMTRAN_CODE,location="$ESTIMATION"){***
                                                                    statements to be passed
 $EST METHOD=SAEM NBURN=3000 NITER=1000 ISAMPLE=1 NSIG=2 SIGL=6
                                                                    unchanged to the target scripting
 CTYPE=3 CITER=10 CALPHA=0.05 NOPRIOR=1
                                                                    language e.g. NM-TRAN
 NOABORT PRINT=10
                                                                    $ESTIMATION record to specify the
 GRD=TS(9) FILE=TGI.raw
                                                                    estimation methods and options.
 $COV MATRIX=R PRINT=E UNCONDITIONAL SIGL=8
 ***} # end TARGET CODE
       }# end ESTIMATE
    }# end of myEST
```

TEL – Task Execution The TEL object Modelling with R

TEL is an R package for DDMoRe that allows modellers to manipulate MCL objects, create MOGs and perform tasks with these MOGs e.g. estimation, simulation, optimal design.


This TEL object uses the myEST function defined in the TGI_task properties object. The arguments to myEST specify the target and define a Modelling Object Group.

```
GTGI_tel = telobj{
    # Fit model using NONMEM
    TGI_fit=TGI_task$myEST(t=NMTRAN_CODE, m=TGI_mdl, p=TGI_par, d=TGI_dat)
    # end of task execution language code
```


The results of the estimation task are returned in a standard output object named TGI_fit. This is an R object that can be passed to other TEL functions or standard R commands.

Standards are being defined for modelling output to allow, for example, use of *Xpose* with BUGS output, or *coda* with NONMEM MCMC output.

MDL – Flexibility Modelling Object Group and Task Object Group Links to the Environment

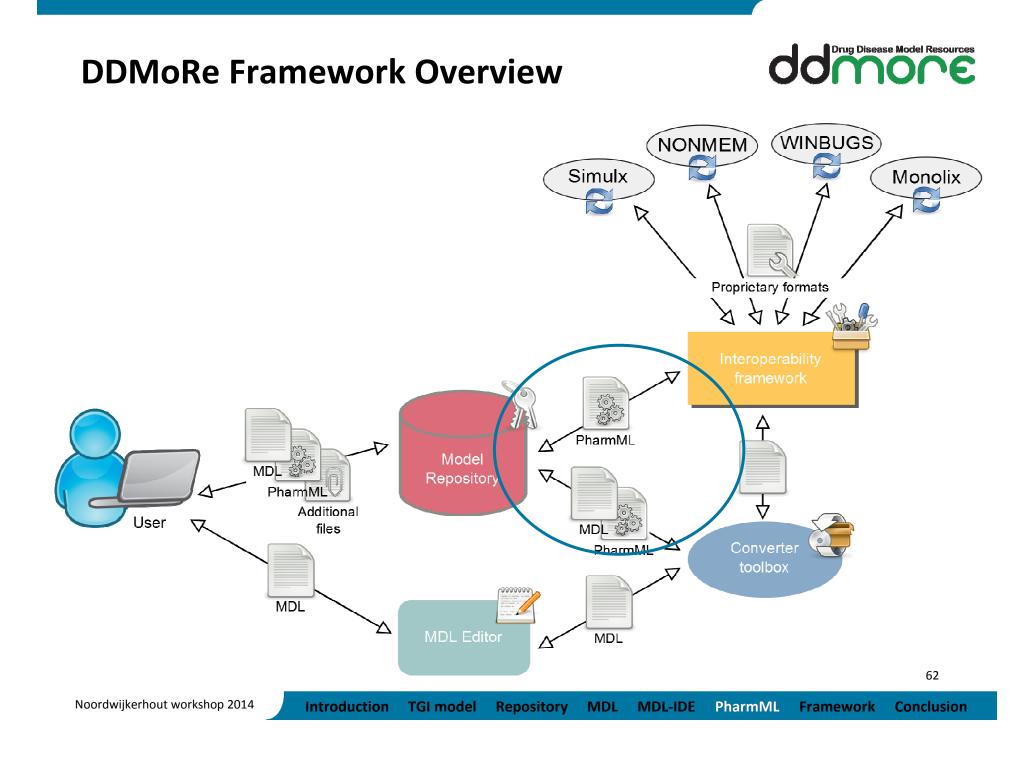
Drug Disease Model Resources

MDL IDE

Platformindependent

- MDL implementation
 - Grammar
 - Validation
 - Scoping rules
 - Type checking
 - Automated code formatting
- User interface
 - Content assistant
 - Highlighting of code
 - Show information about errors/warnings
 - Automated fixes
 - Documentation

- Code generator
 - Converter to NONMEM
 - Converter to PharmML


- Model execution
 - R
 - NONMEM
 - Simulx

Noordwijkerhout workshop 2014

Live demonstration: overview

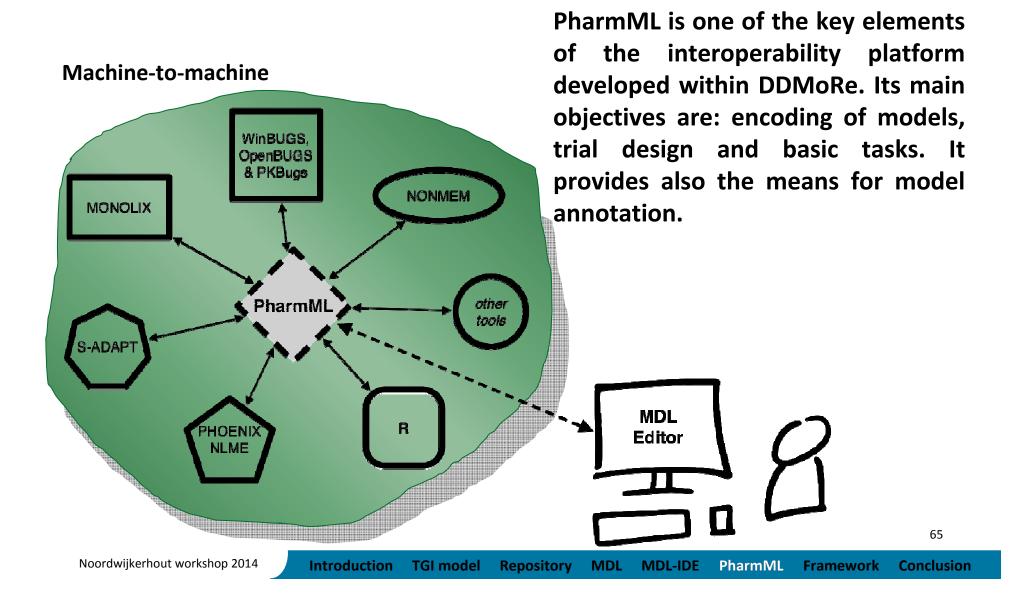
- Create a new project
- Add/import models and data
- Write code using content assistant
- Navigate using outline view
- Use templates
- Understanding errors and warnings
- Quick fixes
- Convert and execute models

Introduction to PharmML

A long-standing problem in Pharmacometrics is the lack of a common standard allowing for exchangeability of models between existing software tools, such as Bugs, Monolix, NONMEM and others. PharmML, as part of the DDMoRe interoperability platform, tries to fill this gap.

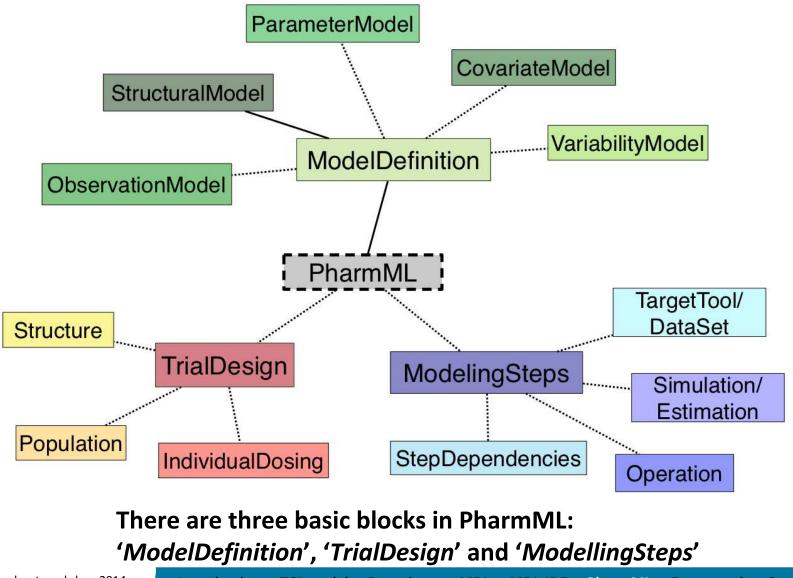
PharmML stands for 'Pharmacometrics Markup Language'

This new standard provides an encoding platform for approaches currently in use but also attempts to create support for novel elements.


Results

- The current specification supports the exchange of continuous models. Models encoded in this way can be used not only for the standard tasks, such as simulation, estimation but also modelling and exploration.
- The novel clinical trial model provides the modeller with the tools to construct almost arbitrary study designs using only few basic building blocks, such as *Epoch*, *Arm* and *Treatment*.
- Moreover, PharmML is providing a means to annotate an arbitrary element of the model, making effective searching and reasoning on models in the DDMoRe repository possible.

Role of PharmML in the interoperability platform

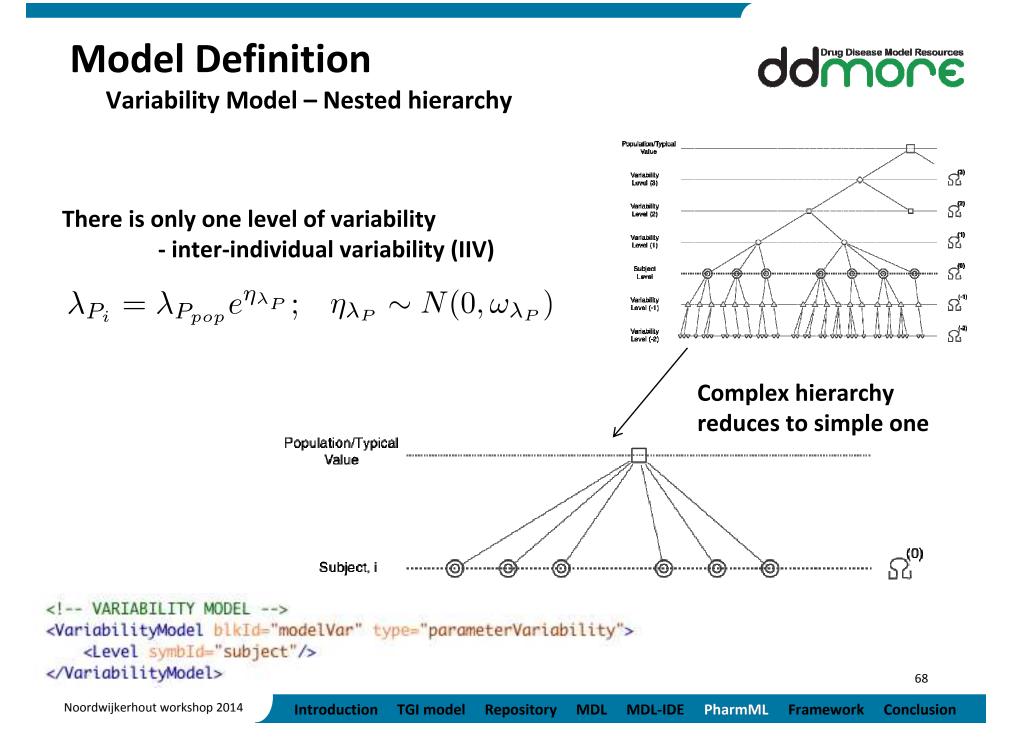


PharmML language organization

66

Noordwijkerhout workshop 2014

Introduction TGI model Repository MDL MDL-IDE PharmML Framework Conclusion


PharmML model in editor view

• pha	12 😎	<modeldefinition xmlns="http://www.pharmml.org/2013/03/ModelDefinition"></modeldefinition>	
1 2	13 14 🕨	<variabilitymodel <a="" href="blkId=" modelvar"="" type="parameterVariability"> [2 lines]</variabilitymodel>	
1 2 3 4 5 6 7 8 9	17 18 🕨	<variabilitymodel blkid="obsErr" type="residualError"> [2 lines]</variabilitymodel>	rmML."
5	21 22 🕨	<parametermodel blkid="pm1"> [242 lines]</parametermodel>	THME
6 7	265		
8	266 453	<pre><structuralmodel blkid="sml"> [186 lines]</structuralmodel></pre>	
	454 > 490	<observationmodel blkid="om1"> [35 lines]</observationmodel>	
11 2001	491		
n oi	492 493 ▽	<trialdesign xmlns="http://www.pharmml.org/2013/03/TrialDesign"></trialdesign>	
568 569	494 495 🕨	<pre><structure> [26 lines]</structure></pre>	
743	522 523 🕨	<population> [19 lines]</population>	
	543 544 🕨	<individualdosing> [22 lines]</individualdosing>	
	567		

The first three layers of the PharmML hierarchical structure are shown: (a) The root level '*PharmML*', (b) the second level with '*ModelDefinition*', '*TrialDesign*' and '*ModellingSteps*', and (c) the third level within '*ModelDefinition*' and '*TrialDesign*'.

Noordwijkerhout workshop 2014

Model Definition

Parameter Model

69

All parameters are log-normally distributed, e.g.

Random effect

$$\eta_{\lambda_P} \sim N(0, \omega_{\lambda_P})$$

<!-- LAMBDAP log-normal distributed --> <RandomVariable symbId="eta_LAMBDAP"> <ct:VariabilityReference> <ct:SymbRef blkIdRef="modelVar" symbIdRef="indiv"/> </ct:VariabilityReference> <NormalDistribution xmlns="http://www.uncertml.org/3.0"> <mean> <rVal>0</rVal> </mean> <stddev> <var varId="omega_LAMBDAP"/> </stddev> </NormalDistribution> </RandomVariable>

Model Definition

Structural Model

ODE for 'C'

 $\frac{dC}{dt} = -KDE \times C$

Initial condition

$$C(t=0) = C_0$$

<!-- STRUCTURAL MODEL - ODES --> <StructuralModel blkId="sm1">

> <!-- dC/dt --> <ct:DerivativeVariable symbolType="real" symbId="C"> <ct:Assign> <Equation xmlns="http://www.pharmml.org/2013/03/Maths"> <Binop op="times"> <Uniop op="minus"> <ct:SymbRef blkIdRef="pm1" symbIdRef="KDE"/> </Uniop> <ct:SymbRef symbIdRef="C"/> </Binop> </Equation> </ct:Assign> <ct:IndependentVariable> <ct:SymbRef symbIdRef="time"/> </ct:IndependentVariable> <ct:InitialCondition> <ct:InitialValue> <ct:Assign> <ct:SymbRef blkIdRef="pm1" symbIdRef="C0"/> </ct:Assign> </ct:InitialValue> <ct:InitialTime> <ct:Assign> <ct:Real>0</ct:Real> </ct:Assign> </ct:InitialTime> </ct:InitialCondition>

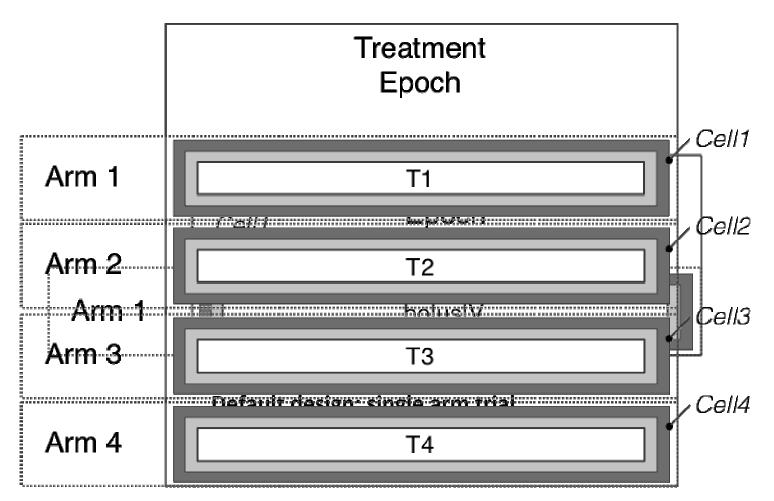
</ct:DerivativeVariable>

PharmML Trial Design Features

PharmML offers a very flexible structure for the setup of clinical trials – based on a CDISC standard. Using only a few basic elements the modeler can compose virtually any type of design.

The basic building blocks are:

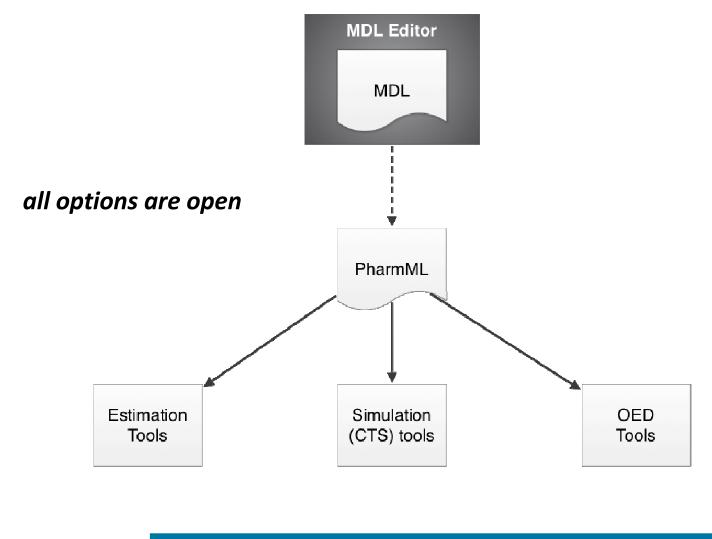
1. **Epoch** – basic time interval within a study – for example a treatment or washout.

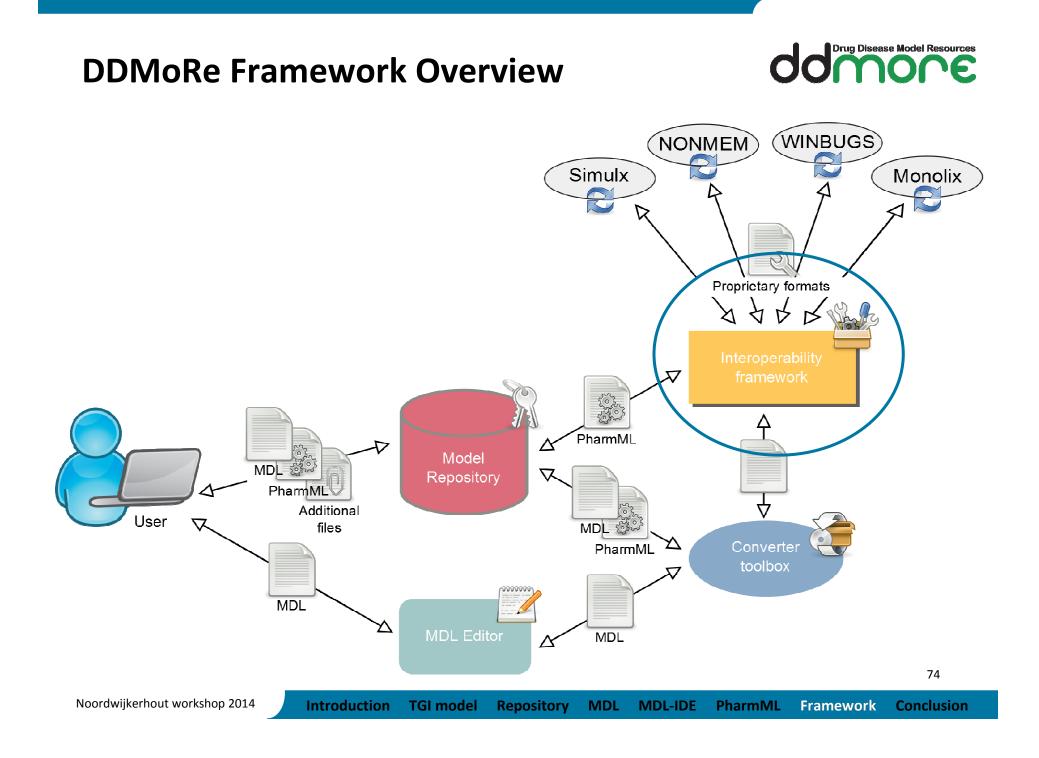

2. Arm – represents a path through the study taken by a subject. An arm is composed of a study cell for each epoch in the study.

3. Cell – describes what is carried out during an epoch in a particular arm. There is only one cell per epoch.

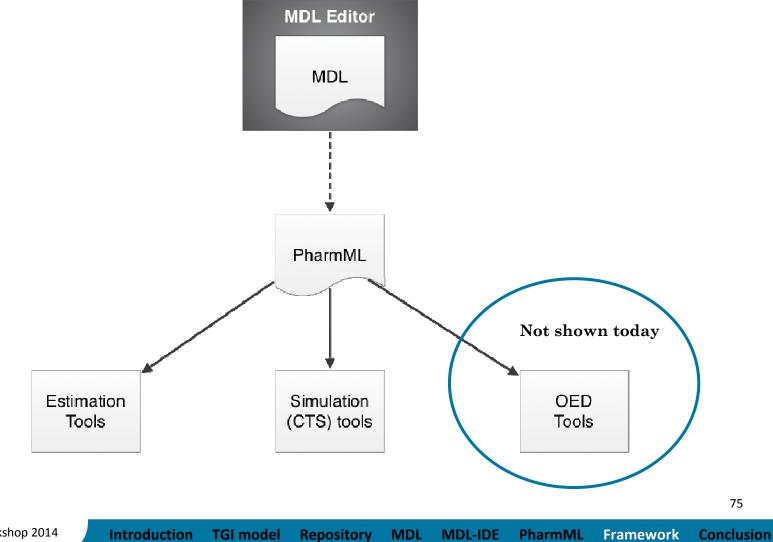
4. Activity (Treatment) – is an action that is taken in the study. Here it is typically a treatment regimen or a washout.

Trial Design – Ribba et al. example




Alternative design, e.g. with four arms, is easily implemented in PharmML – each arm receives a different treatment, T1-T4.

Once you have a model encoded in PharmML...


73

Once you have a model encoded in PharmML...

Estimation using NONMEM

76

Requires PharmML->NM-TRAN conversion

\$PROBLEM Example 5 - estimation for growth tumor model (Ribba et al. 2012)

\$INPUT ID TIME DV ARM AMT MDV \$DATA example5 data.csy IGNORE=@

SEST METHOD=SAEM INTER NBURN=2000 NITER=1000 ISAMPLE=2 IACCEPT=0.4 SCOV STHETA (1.0) ; pop PO (1.0) ; pop Q0 (0.0 FIX) ; QPO (1.0) ; a (10.0) ; pop LAMBDAP (100.0 FIX) ; K (10.0) ; pop KDE (10.0) ; pop KQPP (10.0) ; pop KPQ (10.0) ; pop GAMMA (10.0) ; pop DELTAQP SOMEGA (0.5); omega P0 (0.5); omega Q0 (1.0) ; omega LAMBDAP (0.5 FIX) ; omega KDE (1.0) ; omega KQPP (1.0) ; omega KPQ (1.0); omega GAMMA (1.0) ; omega DELTAQP

Estimation using NONMEM

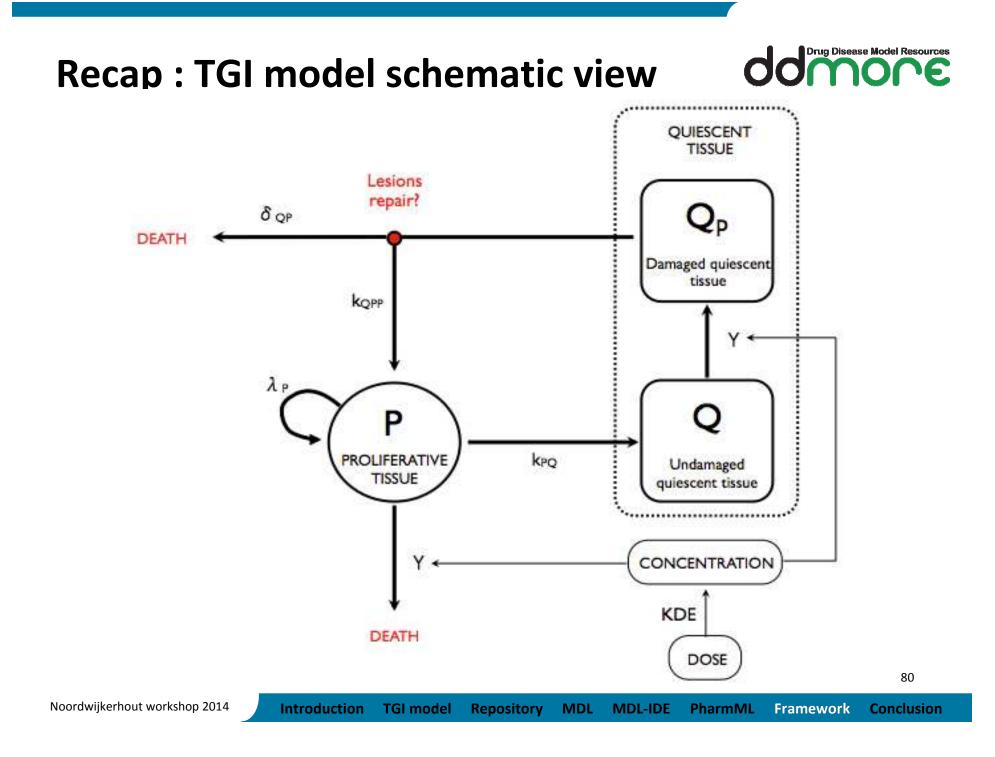
- NONMEM estimation for the TGI model ...
 - … not much fun to watch 'live' ☺
- However we have an estimation we prepared earlier ③

Methods :	used:							
[1] "Sto	chastic	Approxim	mation Exped	ctation-Max	kimization	(No Prio	r)"	
Paramete.	r estima	ates:						
#######	#######							
THETAs:								
[[1]]								
TH1	TH	12 1	гнз тн4	4 тн5	TH6	TH7	TH8	TH9
12.40000	35.6000	0.081	190 0.02670	0 0.00917	0.00242	0.59100	0.08170	2.77000

Simulation using Simulx

Requires PharmML->MLXtran conversion

[INDIVIDUAL]


input={DELTAQP_pop, omega_DELTAQP, GAMMA_pop, omega_GAMMA, KDE_pop, omega_KDE, KPQ_pop, omega_KPQ, KQPP_pop, omega_KQPP, LAMBDAP_pop, omega_LAMBDAP}

```
DEFINITION:
DELTAQP = {
     distribution=logNormal,
     reference=DELTAQP pop,
     standardDeviation=omega DELTAQP
GAMMA = \{
     distribution=logNormal,
     reference=GAMMA pop,
     standardDeviation=omega GAMMA
KDE = \{
     distribution=logNormal,
     reference=KDE pop,
     standardDeviation=omega KDE
KPQ = \{
     distribution=logNormal,
     reference=KPQ pop,
     standardDeviation=omega KPQ
KOPP = {
     distribution=logNormal,
     reference=KQPP pop,
     standardDeviation=omega KQPP
   Noordwijkerhout workshop 2014
```

Simulation using Simulx

- Simulx is a R function for easily computing predictions and simulating data from both MLXtran and PharmML models and calls MLXcompute.
 - This powerful C++ based computation engine allows to solve efficiently complex systems of ordinary differential equations (ODEs) and delayed differential equations (DDEs).

Recap : Clinical questions

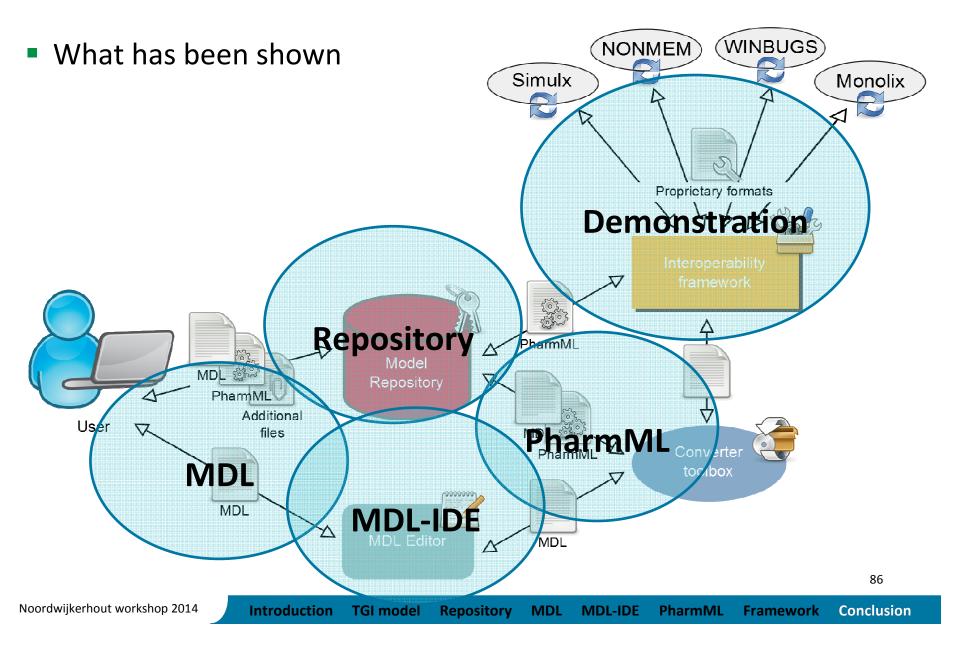
- Can a model be developed to try to better understand (formulate an hypothesis to explain) the prolonged response phenomenon?
- 2. Can the model be used to investigate if, given this prolonged response phenomenon, a modification of the therapeutic scheduling can lead to improve the efficacy of the treatment?

Conclusion

Demonstration – Question 1

- Can a model be developed to try to better understand (formulate an hypothesis to explain) the prolonged response phenomenon?
 - Pick the model from the repository
 - Estimate population parameters with NONMEM
 - Use Simulx to simulate a typical individual

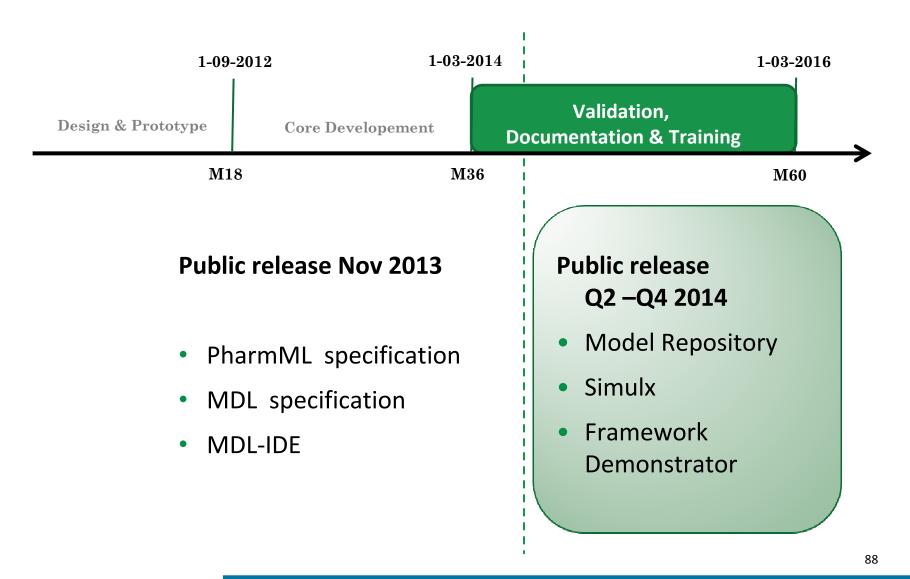
Demonstration – Question 2



85

- 2. Can the model be used to investigate, given this prolonged response phenomenon, if a modification of the therapeutic scheduling can lead to improve the efficacy of the treatment?
 - Use Simulate patient's response with a different PCV scheduling

Recap


Recap

- What has been shown
- What has not/partly been shown
 - Task Execution Language / "Workflow"
 - Metadata framework / ontologies
 - Prototypes on CTS and MB-AOD
 - Disease area prototype models
 - Plans for a Model Review Group (MRG)

Road map

Contributors to presentation

- Wendy Aartsen
- Jonathan Chard
- Mihai Glont
- Mats Karlsson
- Niels Rode Kristensen
- Camille Laibe
- Marc Lavielle
- Celine Sarr
- Mike K Smith

Drug Disease Model Resources