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CHAPTER 1
What is PharmML?

1.1 The Problem
The cartoon on the right summarises the principal 5

problem that PharmML addresses: namely, the re-
liable exchange of pharmacometric models between
software tools. What we are aiming for is illus-
trated in figure 1.1, where PharmML is the exchange
medium for pharmacometric models for the main 10

modelling and simulation tools in the field. This is
not an unreasonable goal and has been successfully
realised in the field of Systems Biology.

In Systems Biology the problems our Frustrated
Pharmacometricans complain of do not exist. Soft- 15

ware tools exchange models using the Systems Biol-
ogy Markup Language (SBML; www.sbml.org) [Hucka et al., 2003] and many published mod-
els can be found in the BioModels Database (http://www.ebi.ac.uk/biomodels-main/)
[Li et al., 2010]. Modellers don’t worry about the content of an SBML file; they rely on the fact that
when they exchange it between their favourite modelling tools, it just works. Crucial to its success 20

has been an active community of tool developers and modellers who have supported and used it dur-
ing that time. Equally important has been the provision of sophisticated software libraries (libSBML
and JSBML) that take away much of the pain a software tool developer would otherwise experi-
ence supporting what is now quite a complex standard. It is a virtuous circle. Users demand their
modelling tools support SBML. Developers provide reliable SBML support using libSBML, which 25

enables them to give their users what they want. The more tools that support SBML, the more useful
it becomes. The cost of supporting SBML is not negligible but quality libraries like libSBML make
the cost acceptable.

This lesson has not be ignored by the pharmacometrics community and in fact a number of years
ago the NLME consortium (a consortium of pharmaceutical companies now all part of DDMoRe) 30

started to work on a very similar standard to PharmML. This resulted in early drafts of an XML
based exchange language, called PharML, but work on it was unfortunately discontinued and the
standard has never been used and validated. There are a number of other exchange standards in
related modelling fields, which we have drawn on in the development of our work to varying degrees,
including: 35

CellML Supports the exchange and storage of computer based mathematical models of biological
systems [Nielsen and Halstead, 2004].

2
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1.2. The Solution

Figure 1.1: Interoperability platform to exchange models via PharmML.

NeuroML Supports the exchange and description of models “to describe the biophysics, anatomy
and network architecture of neuronal systems at multiple scales”1 [Gleeson et al., 2010].

NineML Describes neuronal networks in a “simulator independent language”2 that is design to in-
teract with NeuroML [Gorchetchnikov et al., 2010].

SED-ML Encodes simulation experiments of SBML and CellML models “to ensure exchangeability 5

and reproducibility of simulation experiments”3 [Waltemath et al., 2011].

So what is the solution to the problem? PharmML. An XML based language that will be able
to encode models from NONMEM, MONOLIX, BUGS and related tools. We intend this to be a
community standard nucleated around the members of the DDMoRe consortium. In addition we are
developing a software library (libPharmML) to help tool providers incorporate support of PharmML 10

and to facilitate its general adoption in the field.
So there is hope for the Frustrated Pharmacometricians. PharmML will solve the problem.

1.2 The Solution
Having described the problem, we here articulate the kind of solution we wanted PharmML to be.
Developing a language as complex as PharmML is a difficult undertaking and we wanted to make 15

sure that we had some firm principles in place to help when designing the language. We’ve set these
aims and objectives below. PharmML should:

describe the mathematics of a model The language should not include information about the au-
thorship of a model, its update history, or the nature of the disease process or drug that is being
modelled. These aspects will be captured by the annotation of the PharmML document and are 20

out of scope of this specification.

describe the task(s) associated with a model The task(s), such as simulation or estimation, to be
performed with a model should be encoded in the language.

1Quoted from http://www.neuroml.org on 15 Mar 2013.
2Quoted from http://software.incf.org/software/nineml on 15 Mar 2013.
3Quoted from http://sed-ml.org on 15 Mar 2013.
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1.3. The DDMoRe Consortium

be declarative The language should describe what information is present in a model and what the
associated task(s) are. It should not describe how the information is organised, or how the
task(s) should be performed.

be platform independent Language elements specific to a particular modelling tool should not be
included. For example it should not describe a structural model using a name specific to 5

PREDPP in NONMEM.

serve as an exchange format for the DDMoRe infrastructure The language should either support
features required by the infrastructure or provide extension mechanisms so that additional in-
formation can be associated with the PharmML document.

provide support for ontological annotation The language should provide a mechanism for it to be 10

annotated with information that is useful to describe the model, but which is beyond the scope
of the PharmML document itself.

enable custom extension Provide an extensibility mechanism so that software tools can associate
additional, possibly tool specific information, with a PharmML document.

reuse existing standards where appropriate Where an established information standard exists that 15

can be used to represent information within the PharmML document, we should adopt it.

1.3 The DDMoRe Consortium
The Drug Disease Model Resources (DDMoRe) consortium aims to promote collaborative drug and
disease modelling and simulation research. Its aim is to develop tools and standards that will help the
consortium members and later the wider scientific community achieve this goal. Providing PharmML 20

is a key goal of the consortium as it underpins a number of related deliverables of the consortium. In
particular:

• The DDMoRe infrastructure in which PharmML is used to exchange models between the dif-
ferent modelling tools.

• The DDMoRe model repository in which PharmML will be used to upload and export models 25

to and from the repository. It will also serve as the storage medium for the repository.

• The DDMoRe library of reference models and data-sets, which will provide models in several
therapeutic areas. These models will be encoded using PharmML.

The contribution of the DDMoRe consortium members in guiding and reviewing the standard has
been enormous. As the standard evolves their role in using and then promoting the standard to the 30

wider community will be invaluable.

1.4 How PharmML was developed
We, the authors, have organised and designed PharmML, but its development has very much been a
collaborative process. When embarking on this project we had a number of development guidelines
that we adhered to. We aimed to: 35

• start with a limited scope and expand the functionality we encode over time.

• drive development using use cases which reflect the current scope.

4



1.4. How PharmML was developed

• test the implemented use cases by generating executable models.

• have frequent review meetings with experts to make sure we are on the right track.

• use existing technology standards if it is possible and reasonable to do so.

• use existing information standards if applicable to avoid re-inventing the wheel.

• make sure the standard is in a form and uses names and terms that make sense to the expert 5

community.

The use-case based development cycle is illustrated in figure 1.2 and you can see how the gen-
eration of ‘executable’ prototype models was important in ensuring assumptions were correct before
expanding the scope of the design. For this to be possible the use cases were documented with a math-
ematical description and the expected outputs and results of the model were also described in detail 10

[Swat and Moodie, 2013]. In some cases reference MATLAB R© implementations were also included
to assist prototype code generation. Although this development cycle was our objective, in the later
stages there was insufficient time to upgrade the code generation framework to produce executable
models from a PharmML document. Consequently some parts of the specification, in particular the
parts related to estimation tasks, have not been tested as thoroughly as we would like. 15

XML	  Schema	  
defini/on	  

build	  prototype	  
implementa/on	  

Code	  
generator/
translator	  

xml	  
use	  cases	  

Executable	  
Model	  

refine	  
defini/on	  

tests	  
work?	  Yes	  

No	  

expand	  
defini/on	  

Figure 1.2: An overview of the development cycle adopted by the PharmML team.

Peer review is important in the development of PharmML and to date we have hosted three face-
to-face review meetings since the development of PharmML commenced in August 2011. These
meetings were:

• The DDMoRe consortium meeting in Leiden, 24–26 Apr 2012.

• The DDMoRe consortium meeting in Noordwijkerhout, 11–13 Sep 2012. 20

• The DDMoRe technical workshop hosted by Novo Nordisk in Copenhagen, 28–30 Jan 2013.

5



1.5. Imperative or Declarative?

1.5 Imperative or Declarative?
In developing PharmML we have designed it to be a declarative language (see section 1.2). While
we feel this is the best approach to take for an information exchange langage, it does present us with
number of challenges when dealing with NONMEM, the leading tool in the field. Despite having a
specifically defined language (NM-TRAN [Beal et al., 2009]), NONMEM offers a lot of flexibility to 5

the user, and experienced users can make NONMEM do things that it was never designed to do, to a
large extent because the imperative approach used in NONMEM facilitates this.

The challenge is to convert from the imperative to the declarative language, because there are
usually many ways to do the same thing in the imperative language. Therefore, generating a PharmML
document from a NONMEM control stream may be challenging. 10

1.6 The Evolution of PharmML
This document represents the start of an evolution for PharmML. Any piece of software is upgraded
as users request new features and developers find better ways to do the same thing. A successful
standard is no different and with success in mind we expect PharmML to evolve and change as it is
subject to the same influences. To manage this process we plan to adopt the following strategy to 15

record versions of the PharmML specification.

1.6.1 Version number
To record changes in the specification we will use the following three level numbering system, of the
form x.y.z. The levels correspond to the following types of revision:

x major Significant new features or radical change of design. Not backwards compatible. 20

y minor New features or evolutionary design changes. Always backwards compatible.

z patch Error corrections. Always backwards compatible.

By backwards compatible we mean that a PharmML parser that supports version 1.9.0 must be
able to read a file that is compliant with version 1.4.0 of the PharmML specification.

1.6.2 Release Process 25

Before each release we will submit a release candidate of the specification to the community for
comments and criticism. This is typically called a Request for Comments (RFC) and is standard
practise. Based on review comments the specification will either be revised, possibly significantly,
and submitted for review again or (if revisions are minor) revised and released.

The RFC period for this specification will end on 26 April 2013. 30

1.7 Feedback
Whether it is during the RFC process or after a release your feedback is important to us. Typically,
this feedback will be in the form of a specific issue: either to report defects you have identified in the
specification or to request new features. Either way we would urge you to submit specific issues to
our tracker at: sf.net/ddmore/tracker. In some cases you may wish to ask for clarification or 35

raise an issue that is broader than a specific issue or requires some discussion within the community.
Here you should contact the PharmML forum at sf.net/ddmore/forum.

6
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CHAPTER 2
This Document

2.1 Overview
In this specification we describe the PharmML standard. We define what the language is, how it 5

is encoded, how it should be understood, and how software can validate it. Initially, we define in
chapter 3 what is in and out of scope of the current version of PharmML. Underlying PharmML is a
mathematical model that describes a pharmacometric model. Understanding this is important if you
are to completely understand the language. In chapter 4 we go through this model in detail, providing
a detailed mathematical description of the model and its associated assumptions. Also important 10

for the understanding of PharmML is the discussion of trial designs in chapter 5, where the basic
assumptions behind the way trial designs are handled in PharmML are discussed. Next we move on
to the description of the implementation of PharmML. In chapter 6 we describe the organisation of a
PharmML document and then go on to explain key features of the language, such as variable scoping,
that are important to understand before investigating the language further. Chapter 7 explains the 15

details of PharmML using examples. These examples are designed to highlight specific features of
the language and by taking you through a series of worked examples we hope to help you to fully
understand PharmML. The final chapter in Part I (Chapter 8) lists a number of unresolved issues.

At the end of this document we have the technical reference (Part II on page 101). This provides
the fine detail of the technical implementation of PharmML, including the XML Schema design and 20

the rules to which a correct PharmML document must conform. This is reference material and not
intended to be read like a novel from start to finish.

To conclude, helping you to understand PharmML is the main goal of this specification. We want
you to use this document to review and critique PharmML. We want you to suggest improvements to
the language. Most of all we want you to use it. 25

2.2 How to read this Specification
PharmML is a language of benefit to pharmacometric modellers, but ironically is not designed to be
read by them when in every day use. We expect software support for PharmML to be developed
by software engineers, who do not have a deep understanding of pharmacometrics and modelling.
Therefore, the challenge for us in drafting this specification is to satisfy both readerships: modellers 30

and software engineers. To help, we have come up with the following advice on how each readership
could read this specification.

If you are a pharmacometric modeller or mathematician then you will want to start with the mathe-
matical definition of PharmML in chapter 4 (page 13). From there you may want to skim the language

7



2.2. How to read this Specification

overview (chapter 6) before working through the examples in chapter 7 (page 58). You may want to
revisit chapter 6 (page 37) after reading the examples.

If you are a software engineer then we recommend that you start with the language overview
in chapter 6 (page 37). After this, work through the examples in chapter 7 (page 58) and try to
understand the language features in this way. Those of you with a strong mathematics background 5

will find it helpful to read through the mathematical definition as well (chapter 4). Finally, when it
comes to implementing PharmML support, you will find the technical reference (Part II on page 101)
very important, but only after you have an understanding of PharmML from Part I.

8



CHAPTER 3
Features supported by PharmML

3.1 Introduction
The scope of pharmacometric models is very wide, as such models can be empirical as well as mecha- 5

nistic; describe continuous as well as discrete data types; and be deterministic, stochastic or a mixture
of both. It is a challenging endeavour to accommodate this variety of possibilities under one com-
putational standard, therefore it is indispensable to split the task into multiple steps of subsequent
specifications and to define precisely the scope of every release.

In this chapter we define the scope of the functionality in PharmML. In particular what infor- 10

mation a PharmML document can represent and what it cannot. As is common practise in software
engineering we have described the functionality as a set of “features”. These features are said to be
current if they are provided by this release of PharmML, planned if they are not in the current ver-
sion, but planned for a future release. It is important to remember that this specification is just the
beginning of PharmML and over time we expect many of the features currently out of scope to be 15

provided by future releases of the language.
The language is organised into three sections, which we believe naturally describe the logical

organisation of a pharmacometric model and its associated tasks. Consequently we have grouped the
features to match this organisation. The sections are:

Model Definition A description of the model, incl. the structural model, the model parameters, rele- 20

vant covariates, the variability components, and the observations.

Trial Design A description of the design of a clinical trial associated with the model (for example
a trial from which data is available to estimate the parameters of the model or a trial to be
simulated with the model).

Modelling Steps A description of steps or tasks performed with the model. Typically this describes 25

how the model has been used, for example to estimate its parameters or to perform a simulation.

3.2 Current Features

3.2.1 General
– Metadata annotation Provides support to enable metadata descriptions of the PharmML document.

– Extension mechanism Provides support to enable the extension of the PharmML document. 30

9



3.2. Current Features

3.2.2 Model Definition
Structural Model

PharmML can encode:
– A structural model defined by a set of algebraic equations. Typically the explicit solution to a sim-

ple PK model, or a dose-response model. 5

– A structural model defined by a system of ODEs with initial conditions. Such systems of ODEs can
include algebraic equations as well.

– A structural model defined in SBML format.

– A structural model from an external resource or library.

– Standard PK models Including those encoded by Monolix [Bertrand and Mentré, 2008] or PREDPP 10

in NONMEM [Beal et al., 1992].

– Standard PD models. Including those defined by Monolix [Bertrand and Mentré, 2008].

Covariate Model

PharmML can encode:
– Continuous covariates. These can be sampled from a probability distribution and used with an 15

applied transformation.

– Categorical covariates. These can also be sampled from a probability distribution.

Parameter Model

PharmML can encode:
– The population mean/typical value for a parameter. 20

– Linear covariate model.

– Random effects at arbitrary levels of variability.

– Correlation of the random effects, described by a correlation or covariance matrix.

– Non-linear parameter models, such as those described in [Keizer and Karlsson, 2011].

Variability Model 25

PharmML supports the following levels of variability:
– Between-Subject Variability (BSV). Aka inter-individual variability (IIV).

– Inter-Occasion Variability (IOV). Such as within-subject variability.

– Higher levels of variability above BSV. Such as variability between countries or centres.

– Lower levels of variability below IOV. Such as variability between sub-occasions within occasions. 30

Observations Model

PharmML currently only supports the following observation model:
– Continuous observation model. A residual error model applied to one or more variables in the struc-

tural model.

– Autocorrelation of the residual errors in a continuous observation model. 35

10



3.3. Planned Features

3.2.3 Trial Design
PharmML can encode the following features of a trial design explicitly1:
– Bolus dosing.
– Infusion dosing.
– Multiple dosing regimens including mixed bolus and infusion. 5

– Repeated dosing.
– Dosing at arbitrary time points.
– Steady state dosing.
– Dosing to more than one compartment.
– Cross-over designs. 10

– Parallel designs.
– Washout periods.
– Run-in periods.
– Occasions – defined by time interval within a treatment epoch.
– Trials with different centres or other levels of organisation above study groups (aka arms) 15

3.2.4 Modelling Steps
PharmML can encode the following features related to the task(s) associated with a model:
– Estimation utilising the maximum likelihood principle.
– Simulation of the model

3.3 Planned Features 20

3.3.1 General
– Units Support for unit definitions and unit consistency checking.

3.3.2 Model Definition
Covariate Model

PharmML does not support the following covariate related features: 25

– Conditional distributions of continuous covariates.
– Clusters of categorical covariates.
– Selection/exclusion criteria for covariates.

Structural Model

PharmML does not support the following model types: 30

– (Hidden) Markov models.
– Delay Differential Equations (DDEs).
– Partial Differential Equations (PDEs).
– Stochastic Differential Equations (SDEs).

1As opposed to the implicit trial design definition present within a data file.
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3.3. Planned Features

Observations Model

PharmML does not support the following types of observation models:
– Count data models. Poisson, negative binomial, zero-inflated Poisson models etc.

– Nominal and ordered categorical models. Logistic regression, proportional odds models etc.

– Time-to-event models. Parametric (e.g. exponential, Gompertz, Weibull) or semi-parametric Cox 5

models.

3.3.3 Trial Design
PharmML cannot encode the following features in a trial design:
– Reset of all or single compartments.

3.3.4 Modelling Steps 10

PharmML cannot encode the following features related to the task(s) associated with a model:
– Bayesian inference methods.

– Writing estimation results to a file or other external resource.

– Writing simulation results to a file or other external resource.

– Exchange of results from one modelling step to another. Currently it is not possible to pass on the 15

results of an estimation task to a subsequent estimation step.

– Model exploration Tasks such as sensitivity analysis are not supported.

– Optimal design

12



CHAPTER 4
Mathematical Representation

All models are wrong but some are useful
George E.P. Box 5

4.1 Introduction
This chapter deals with the mathematical description of models which can be encoded in PharmML.
The figure 4.2 visualises the task every modeller is faced with – find a model (solid line) which ex-
plains the experimental data (diamonds). A perfect mathematical model, given error free experimental
measurements, would explain the underlying mechanism and therefore fit every measurement. The 10

complexity of the human body makes detailed mechanistic representation impossible, so the models
we use are only approximations of a physiological system under consideration with multiple sources
of uncertainty we have to account for, see Figure 4.1.
Additional aspect is the difference between individual and population approach. In the former case,

Figure 4.1: A basic equation visualising the relationship between experimental data and model pre-
diction.

usually when dealing with animal or preclinical studies, frequently sampled data is available and one 15

can estimate individual’s PK and PD parameters, see Figure 4.2. In clinical practise however, the
situation is quite different, Figure 4.3. More data records in total are available but it’s often impos-
sible to estimate subject specific parameters. Instead, the data provides valuable information on the
inter-individual variability.

4.2 Non-linear mixed effect models 20

The approach which proved to be very effective for the analysis of population data is that of non-
linear mixed effect models, NLME. The nonlinearity means that it can handle virtually any type
of structural model, usually highly non-linear. Additionally one can consider population or subject
related factors, known a priori or collected during the study, which can be divided into two groups:

• fixed effects – population averages, e.g. typical/population value for volume, and other group 25

or even subject specific explanatory variables, such as treatment groups, gender or weight, see
covariate model in section 4.6.5.
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4.3. Continuous data model

Figure 4.2: Frequently sampled individual PK data. The black diamonds stand for experimental data,
the solid line for the time course of concentration as predicted by a mathematical model.

Figure 4.3: Population PK data – for three subjects with different observation times and varying
characteristics, such as area under the curve, maximum values, time of the maximum etc. The grey
line of the population average is to be estimated along with individual estimates.

• random effects – subject/occasion specific, e.g. inter-individual or inter-individual within sub-
ject within centre variability, see section 4.5 on variability.

The notation of fixed versus random effects might be at first confusing as the former account for
population, group but also subject characteristics. As explained in the parameter model section, the
values of individual characteristics are subject specific features but the parameters assigned to them 5

are identical for a group or population.
The structure of this chapter is the following, in section 4.3 we formulate a general nonlinear mixed
effects model for continuous data, section 4.4 introduces the structural model, section 4.5 discusses
the variability as nested hierarchy, section 4.6 is about the parameter model, with discussion on cor-
relation of random effects, covariate model and a comparison of equivalent representations of the 10

parameter model and section 4.7.1 is about the residual error model.

4.3 Continuous data model
A general nonlinear mixed effects model for continuous data for N subjects and ni measurements per
subject i reads as follows ([Lavielle, 2012]):

yij︸︷︷︸
Experimental

data

= f(xij, ψi)︸ ︷︷ ︸
Model

prediction

+ g(xij, ψi, ξ) εij︸ ︷︷ ︸
Error

1 ≤ i ≤ N, 1 ≤ j ≤ ni (4.1)

with
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4.4. Structural model

• yij – jth observation for subject i

• f – structural model prediction

• xij – regression variables, e.g. time or concentration

• ψi – individual parameters

• εij – residual error 5

• g – standard deviation of the residual error

• ξ – parameters of the residual model

With εij being normal distributed with mean 0 and variance 1, yij is also normally distributed with
mean f(xij, ψi) and the standard deviation g(xij, ψi, ξ).

4.4 Structural model 10

This section deals with the first term of the right hand side in eq.4.1

f(xij, ψi)

i.e. the model prediction.
It can be formulated as a simple algebraic equation (e.g. Hill equation) or complex physiology-

based PK model implemented as system of ODEs. When defined in such framework, this determin-
istic model for an individual will later be embedded in a statistical model. Other approaches, such as
SDE-based structural models are not supported in this specification. 15

Example As an example of a structural model we consider a combined PK/PD model,

• PK – oral one-compartmental model

• PD – turnover model, so called Imax model

with the following model parameters ka, V , CL, Imax, IC50, Rin and kout.

k = CL/V

dAd

dt
= −ka× Ad

dAc

dt
= ka× Ad− k × Ac

dE

dt
= Rin×

(
1− Imax× Cc

Cc+ IC50

)
− kout× E

Initial condition: E(t = 0) = Rin/kout

Ad(t = 0) = DoseSize

Ac(t = 0) = 0;

Cc = Ac/V

15



4.5. Nested hierarchy as the random variability structure

Alternative formulation The PK model can, in this case, be formulated as an algebraic equation
because an analytic solution exists, i.e.

C(t) =
D

V

ka

ka− k

(
e−k(t−tD) − e−ka(t−tD)

)
4.5 Nested hierarchy as the random variability structure
This section describes the variability structure of the random effects and the related naming con-
vention. It is largely based on the discussions and conclusions from the Copenhagen focus meeting
[DDMoRe/Copenhagen meeting, 2013]. Accordingly, in the following we will distinguish:

• (related to the observations) – residual variability, also known as intra-individual variability 5

and

• (related to the parameters) – inter-individual and inter-occasion variabilities

The former is described in the section 4.7.1, while the latter is described in this section.

Figure 4.4: Inter-individual variability typically occurring in an experiment, here log(Vi=1···5) i.e.
values for five subjects, varying around a typical value log(Vpop), are shown.

4.5.1 Motivation
One way to look at variability is to consider the following simple experiment: in this experiment, we 10

estimate the volume of distribution in five subjects. Following a drug administration we collect blood
samples over a time interval and estimate each subject’s PK parameters. The result will be a set of five
individual estimates such as those in Figure 4.4. The values vary around a certain typical/population
value. It is apparent that the only variability source is the fact that these are different persons, i.e. we
have a rough estimate of the so called inter-individual variability. 15

As an extension of this setup, we can now consider different number of occasions, when the PK
parameters are estimated for each subject. If we restrict the discussion to two subjects only, each of
them having three or four occasions, respectively, we can illustrate the results such those in Figure
4.5. Repeatedly performing the same experiment for each subject is equivalent to create an additional
level of variability, the inter-occasion within individual variability. 20

Similarly, one can add e.g. ’country’ as a new variability level. If a clinical trial has been conducted
in various countries, it is reasonable to ask if the geographic location influences the outcome of the
study.
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4.5. Nested hierarchy as the random variability structure

Figure 4.5: Subject variability level, (0), and within-subject (or occasion) variability level, (−1),
typically occurring in an experiment, with index i for subjects and k for occasion. Here two subjects
only are visualised, each of them having four or three occasions, respectively.

4.5.2 General case
As a generalisation of the examples described above, one can derive the nested hierarchy (also known
as inclusion hierarchy) of the variability structure of random effects. It can be visualised as a tree or
alternatively using a Venn diagram, see Figures 4.6, 4.7.
The tree representation consists of nodes and links or edges. It has the advantage that it visualises the 5

whole structure explicitly from the top level, the root node, down to lowest level of the variability. It
provides immediate insights needed to understand or to verify the setup of a trial design. However,
in case of a very complex structure, with high number of levels and/or subjects, it can become very
large, making the tree difficult to represent in a typical document. It this case showing only partial
branches will be more helpful, e.g. Figure 4.6. On the contrary, the Venn diagram visualises the levels 10

only, and it might be more suited for the complex cases. Usually, the variability structure consists of
only one or two levels, e.g. individual or {individual, occasion}, see examples below.

The root, i.e. the top node in the tree structure, stands for the population/typical value of a pa-
rameter. Following the current nomenclature, every subsequent variability level is either ’positive’
or ’negative’ dependent on its position relative to the ’subject level’, denoted as 0 – the level ’zero’. 15

Each level has a covariance matrix associated with it, i.e.

• Ω+n – for levels above the ’zero’ level – their names will vary according to the nature of the
levels. For example the variability on country level is called ’between-country variability’.

• Ω0 – also called BSV (between subject variability) or IIV (inter-individual variability).

• Ω−n – for levels below the ’zero’ level – called WSV (within-subject variability) or IOV (inter- 20

occasion variability).

The number of levels will vary dependent on the nature of the study. Cases without or with only
positive/negative levels are possible. Please note that PharmML doesn’t require or use numbers to be
assigned to the various levels of variability. Instead the user can define meaningful identifiers.

Example 1 This example handles the simplest scenario, with only one level of variability: subject– 25

level, see Figure 4.8. The following symbols are used
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4.5. Nested hierarchy as the random variability structure

Figure 4.6: General nested hierarchy of the variability structure – as tree. Note that PharmML doesn’t
require or use numbers to be assigned to the various levels of variability. Instead the user can define
meaningful identifiers.

Figure 4.7: General nested hierarchy of the variability structure – as Venn diagram.

• i – subject index, 1 ≤ i ≤ N

with Nl – number of subjects.
The typical parameter model, without covariate, reads as follows:

log(Vi) = log(Vpop) + η
(0)
i

or alternatively:

Vi = Vpop e
η
(0)
i

with η(0)i ∼ N
(
0,Ω(0)

)
.
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4.5. Nested hierarchy as the random variability structure

Figure 4.8: Example 1 – single level of variability: subject– level

Example 2 In this example there are three levels of variability: {centre, subject, occasion}, see
Figure 4.9. Following symbols are used:

• l – centre index, 1 ≤ l ≤ L

• i – subject index, 1 ≤ i ≤ Nl

• k – occasion index, 1 ≤ k ≤ Nli 5

with

• L – number of centres

• Nl – number of subjects in centre l

• Nli – number of occasions in subject i in centre l

The parameter model, without covariate, reads as follows:

log(Vlik) = log(Vpop) + η
(1)
l + η

(0)
li + η

(−1)
lik

or alternatively:

Vlik = Vpop e
η
(1)
l eη

(0)
li eη

(−1)
lik

with

η
(1)
l ∼ N

(
0,Ω(1)

)
, η

(0)
li ∼ N

(
0,Ω(0)

)
, η

(−1)
lik ∼ N

(
0,Ω(−1)

)
Example 3 In this example there are four levels of variability: {country, centre, subject, occasion}, 10

see Figure 4.10. The symbol list is extended by one for ’country’ as follows:

• m – country index, 1 ≤ m ≤M

• l – centre index, 1 ≤ l ≤ Nm

• i – subject index, 1 ≤ i ≤ Nml

• k – occasion index, 1 ≤ k ≤ Nmli 15

with

• M – number of countries

• Nm – number of centres in country m
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4.6. Parameter model

Figure 4.9: Example 1 – three levels of variability: {centre, subject, occasion}

• Nml – number of subjects in centre l in country m

• Nmli – number of occasions in subject i in centre l in country m

The parameter model reads as follows:

log(Vmlik) = log(Vpop) + η(2)m + η
(1)
ml + η

(0)
mli + η

(−1)
mlik

or alternatively:

Vmlik = Vpop e
η
(2)
m eη

(1)
ml eη

(0)
mli eη

(−1)
mlik

with

η(2)m ∼ N
(
0,Ω(2)

)
, η

(1)
ml ∼ N

(
0,Ω(1)

)
, η

(0)
mli ∼ N

(
0,Ω(0)

)
, η

(−1)
mlik ∼ N

(
0,Ω(−1)

)

4.6 Parameter model
The following section outlines the parameter model. We consider three types of parameter model:

• Type 1. Equation type

ψi = H(β, Ci, ηi)

This is the most general form of a parameter model with no constraints on the function H . It is 5

an implicit equation as it doesn’t allow an easy interpretation of its elements in contrast to the
two following forms.
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4.6. Parameter model

Figure 4.10: Example 2 – four levels of variability: {country, centre, subject, occasion}

• Type 2. Gaussian model with general covariate model

h(ψi) = H(β, Ci) + ηi

Here the parameter is normally distributed up to a transformation h with a general covariate
model and additive random effects.

• Type 3. Gaussian model with linear covariate model

h(ψi) = h(ψpop) + β Ci + ηi

This is a special case of the models above which allows for the most detailed interpretation as
explained in the following section.

with 5

• ψi – individual parameter

• ψpop – typical or population mean parameter

• ηi – random effect(s)

• β – fixed effect(s)

• Ci – covariate(s) 10

• H – arbitrary function

• h – function which transforms the model on both sides, e.g. log, logit, probit.
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4.6. Parameter model

4.6.1 Discussion and examples of Type 1 models
This model type is the most flexible one, able to accommodate

• multiple fixed effects

• multiple random effects and

• an arbitrary (nonlinear) covariate model. 5

Example Let’s consider a complex clearance model as introduced in [Beal et al., 2006], which con-
tains

• four fixed effects θ1, · · · , θ4

• three continuous covariates WT,AGE, SECR

• one categorical covariate ICU 10

• three random effects η1i,met ∼ N (0, ω2
1,met), η2i,met ∼ N (0, ω2

2,met), η3i,ren ∼ N (0, ω2
3,ren)

The model is composed of

1. the average metabolic clearance which reads

CLmetaverage = WT × θ1 − θ2 × Cpss2
θ3 + Cpss2

extended with random effects representing a patient being from an ICU (intensive care unit) or
else

CLi,met = CLmetaverage + (1− ICU) η1,i + ICU η2,i

i.e.

CLi,met =

{
CLmetaverage + η1,i for ICU = 0 i.e. patient not from ICU
CLmetaverage + η2,i for ICU = 1 else

2. and average renal clearance which reads

CLrenaverage = θ4 ×RF with RF = WT × 1.66− 0.011× AGE
SECR

so the clearance for subject i amounts to

CLi,ren = CLrenaverage(1 + η3,i)

The complete model, combining (1) and (2), for an individual’s clearance then reads

CLi = CLi,met + CLi,ren.

This model, although fully flexible, is difficult to break into meaningful sub-components. This is an
entirely different situation for the following model types, where clearly defined sub-components can
be separately stored and annotated. 15
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4.6. Parameter model

4.6.2 Discussion and examples of Type 2 models
Here, we consider normally distributed parameters, up to a transformation h, i.e. normal, log-normal
or logit-normally distributed with identity, the natural logarithm or the logit as transformation, respec-
tively.

Compared to the Type 1 parameter model, the Type 2 parameter model has a more structured
additive form:

h(ψi) = H(β, Ci)︸ ︷︷ ︸
non-linear covariate

model

+ η
(0)
i + η

(−1)
ik + . . .︸ ︷︷ ︸

IIV and other
levels of variability

Accordingly a model for an individual parameter consists of 5

• the left-hand transformation, h

• a non-linear covariate model, i.e. any function, H , of fixed effects, β, and categorical or con-
tinuous covariates, Ci, e.g. Sex or Weight, and

• random effects, η, for inter-individual, inter-occasion and/or other levels of variability (see
section 4.5). 10

Example The following example is taken from the ’Fisher/Shafer NONMEM Workshop’, and in
NMTRAN code reads

WTE = THETA(1) * WT / (THETA(2)+ WT)
V = (THETA(3) + WTE) * EXP(ETA(1))

After taking the logarithm of both sides we get

log(Vi) = log
(
θ3 +

θ1 ×WTi
θ2 +WTi

)
+ ηV,i.

4.6.3 Discussion and examples of Type 3 models
Here, we again consider normally distributed parameters, up to a transformation h, i.e. normal, log-
normal or logit-normally distributed with identity, the natural logarithm or the logit as transformation, 15

respectively.
The Type 3 parameter model has a very convenient fully additive form, which separates all of the

sub-components, making it very easy to understand and process:

h(Xi) = h(Xpop) + β Ci︸︷︷︸
linear covariate

model

+ η
(0)
i + η

(−1)
ik + . . .︸ ︷︷ ︸

IIV and other
levels of variability

Accordingly a model for an individual parameter consists of

• a parameter transformation, h

• a typical or population mean value of the parameter, Xpop

• a linear covariate model, β Ci, with 20

– fixed effects, β, and

– categorical or continuous covariates, Ci, e.g. Sex or Weight
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4.6. Parameter model

• random effects, η, for inter-individual, inter-occasion and/or other levels of variability (section
4.5).

See Figure 4.11 for an example of the linear relationship between a parameter and a continuous
covariate and one, inter-individual, level of variability.

Example Let’s consider volume, V , as a log-normally distributed parameter with two covariates Sex
and Weight and with three levels of variability as discussed in Example 3 in section 4.5 (see Figure
4.9), which can be represented by the equation:

Vlik = Vpope
βV,11Sexi=F

(Wi

70

)βV,2

eη
(1)
l,V eη

(0)
li,V eη

(−1)
lik,V

or alternatively as

log(Vlik)︸ ︷︷ ︸
transformed

individual value

= log(Vpop)︸ ︷︷ ︸
transformed
typical value

+ βV,11Sexi=F︸ ︷︷ ︸
categorical

covariate model
for Sex

+ βV,2 log
(Wi

70

)
︸ ︷︷ ︸

continuous
covariate model

for Weight

+ η
(1)
l,V︸︷︷︸

inter-centre
variability

+ η
(0)
li,V︸︷︷︸

inter-individual
within centre

variability

+ η
(−1)
lik,V︸ ︷︷ ︸

inter-occasion
within individual

within centre
variability

with

η
(1)
l,V ∼ N

(
0,Ω(1)

)
, η

(0)
li,V ∼ N

(
0,Ω(0)

)
, η

(−1)
lik,V ∼ N

(
0,Ω(−1)

)
.

The equation for Vlik represented in the additive form is clearly easier to understand and one can read 5

out the following information from it:

• the parameter transformation, the natural logarithm, log

• the typical volume, Vpop

• the two linear covariate models, βV,1C1 and βV,2C2 with

– a fixed effect for the categorical covariate, βV,1 10

– a categorical covariate, 1Sexi=F

– a fixed effect for the continuous covariate, βV,2
– a continuous covariate, C2 = log(W/Wpop) with Wpop = 70

• multiple random effects

– a random effect above the subject level for inter-centre variability, η(1)l,V 15

– a random effect at the subject level for inter-individual within centre variability, η(0)li,V

– a random effect below the subject level for inter-occasion within individual within centre
variability, η(−1)

lik,V .

4.6.4 Correlation of random effects
Correlation of random effects means that the transformed parameters. e.g. log(Vi) and log(CLi) are 20

correlated as well (although the relationship is not straightforward; see also the discussion below on
correlation and covariates). There are two alternative ways to define the correlation, using either

• a correlation matrix, R, or

• a variance-covariance matrix, Ω.
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4.6. Parameter model

Figure 4.11: The linear relationship between the parameter and a continuous covariate after applica-
tion of appropriate transformations Vi −→ log(Vi) and W −→ log(W/70) with βV,2 = tanα, the
slope of the regression line, and log(Vpop) as the y-axis intercept.

Correlation matrix In this case it is sufficient to define the non-zero correlation coefficients, e.g.
ρV,CL. All other off-diagonal correlation coefficients will be assumed to be equal to 0. For a simple
one-compartment oral PK model with parameters ka, V , CL, and a correlation between CL and V
the full correlation matrix reads as follows

R =

1 0 0
1 ρV,CL

1


Variance-covariance matrix Alternatively, the variance-covariance matrix for the model 5

Ω =

ω2
ka ωka,V ωka,CL

ω2
V ωV,CL

ω2
CL

 =

ω2
ka 0 0

ω2
V ωV,CL

ω2
CL


is providing the necessary information due to the reletionship

Cov(pi,pj) = σiσjCorr(pi,pj) = σiσj ρi,j i.e. ωV,CL = ωV ωCLρV,CL

in which case it is enough to define Ω to cover the full correlation structure.

4.6.5 Covariate model
The covariate model accounts for systematic or known subject characteristics such as treatment group,
gender or body weight. Accordingly, the model can be defined for discrete and continuous covariates
and is the place where one category of fixed effects is defined (the other being the population averages, 10

e.g. Vpop). Of course, the values of individual characteristics (weight or sex) are subject specific but
the parameters assigned to them are identical for a group or population.

As described in the example above the contribution of the continuous covariate Weight to the
parameter value is formulated as βV,2 log(Wi/70) (see figure 4.11). The figure illustrates the linearity
after the appropriate transformation of the parameter, Vi −→ log(Vi) and W −→ log(W/70) with 15

βV,2 = tanα, the slope of the regression line, and log(Vpop) as the y-axis intercept.
In the estimation case the values for the covariate are provided for each individual. In the case of

a simulation (see example 7.2.1) its probability distribution has to be estimated. The information we
have to provide is summarised in the

25



4.6. Parameter model

Continuous covariate model

Covariates = Weight

CovariatesType = Continuous

CovariatesPopDistribution{1} ∼ Normal(popWeight, ωWeight)

with popWeight = 70.07

ωWeight = 14.09

CovariatesTransf = log(Weight/70)

Analog information has to be provided in the case of a categorical covariate, such as Sex and is
summarised for a simple example in the

Categorial covariate model

Covariates = Sex

CovariatesType = Categorical

CategoriesNumber = 2

Categories = {F,M}
RefCategory = F

RefCategProbability = 14/36

4.6.6 Equivalent representations of the parameter model
Every parameter model represented in the Type 3 format discussed before has at least three mathemat-
ically equivalent representation forms, which will be presented and discussed in terms of advantages 5

and disadvantages in the following. It is important to understand these different representation forms,
as they explain the different forms of notation used in different software tools. Here, we concentrate
on NONMEM and MONOLIX only.

Log-Normal distributed

For a log-normal distributed parameter, e.g. V , the equivalent representations read

(1)ηi ∼ N (0, ωV ); Vi = Vpop e
ηi,V

(2)ηi ∼ N (0, ωV ); log(Vi) = log(Vpop) + ηi,V

(3) log(Vi) ∼ N
(

log(Vpop), ωV
)

for a typical value Vpop and standard deviation ωV as described in [Lavielle, 2012]. 10

The typical NMTRAN code for a log-normally distributed parameter is ([Smith and Holford, 2012])
GRPV=THETA(1)
V=GRPV*EXP(ETA(1)) 15

and in MLXTRAN ([Lavielle and Lixoft Team, 2012])
# as explicit equation
eta_V ~ normal(0, omega_V)
V = V_pop*exp(eta_V) 20

# or using short notation
V = {distribution=lognormal, typical=V_pop, sd=omega_V}
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4.6. Parameter model

Figure 4.12: Log-normally distributed ’V’ with Vpop = 8 and ωV = 0.2

Log-Normal distributed with a continuous covariate

For a log-normal distributed parameter, e.g. V , with body weight, W , as covariate the equivalent
representations read

(1) ηi ∼ N (0, ωV ); Vi = Vpop
(Wi

70

)β
eηi,V

(2) ηi ∼ N (0, ωV ); log(Vi) = log(Vpop) + β log
(Wi

70

)
+ ηi,V

(3) log(Vi) ∼ N
(

log(Vpop) + β log
(Wi

70

)
, ωV

)
The typical NMTRAN code for a log-normally distributed parameter with weight as covariate is

GRPV=THETA(1)*(WT/70)**THETA(2)
V=GRPV*EXP(ETA(1)) 5

and in MLXTRAN

# as explicit equation
V_pop = V_pop*(weight/70)^beta_V 10
eta_V ~ normal(0, omega_V)
V = V_pop*exp(eta_V)

# or using short notation
V = {distribution=lognormal, typical=V_pop, covariate=lw70, coefficient=beta_V, 15

sd=omega_V}

with lw70 ≡ log(W/70).

Logit-Normal distributed

For a logit-normal distributed parameter, e.g. Imax, the equivalent representations read

(1) ηi ∼ N (0, ω); Imaxi =

[
Imaxpop

1−Imaxpop e
ηi,Imax

]
1 +

[
Imaxpop

1−Imaxpop e
ηi,Imax

]
(2) ηi ∼ N (0, ω); logit(Imaxi) = logit(Imaxpop) + ηi,Imax

(3) logit(Imaxi) ∼ N
(
logit(Imaxpop), ω

)
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4.6. Parameter model

Figure 4.13: Log-normally distributed ’V’ with ’Weight’ as covariates.

Equation (1) can be rewritten using ’logit’ as follows

Imaxi =
exp

(
logit(Imaxpop) + ηi,Imax

)
1 + exp

(
logit(Imaxpop) + ηi,Imax

)
⇔ Imaxi =

1

1 + exp
(
− logit(Imaxpop)− ηi,Imax

)
The last form is used for a typical NMTRAN implementation of a logit-normally distributed parameter

LGTIMAX=LOG(POP_IMAX/(1-POP_IMAX)) + ETA(IMAX)
IMAX=1/(1+EXP(-LGTIMAX)) 5

and in MLXTRAN

# as explicit equation
eta_Imax ~ normal(0, omega_Imax) 10
logitImaxi = log(pop_Imax/(1-pop_Imax)) + eta_Imax
Imaxi = 1/(1 + exp(-logitImaxi))

# or using short notation
Imax = {distribution=logitnormal, typical=Imax_pop, sd=omega_Imax} 15

Logit-Normal distributed with a continuous covariate

For a logit-normal distributed parameter with Weight as covariate we have

(1) ηi ∼ N (0, ω); Imaxi =

[
Imaxpop

1−Imaxpop

(
Wi

70

)β
eηi,Imax

]
1 +

[
Imaxpop

1−Imaxpop

(
Wi

70

)β
eηi,Imax

]
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4.6. Parameter model

(2) ηi ∼ N (0, ω); logit(Imaxi) = logit(Imaxpop) + β log

(
Wi

70

)
+ ηi,Imax

(3) logit(Imaxi) ∼ N
(
logit(Imaxpop) + β log

(Wi

70

)
, ω
)

The first equation can be rewritten as follows

Imaxi =
exp

(
logit(Imaxpop) + β log

(
Wi

70

)
+ ηi,Imax

)
1 + exp

(
logit(Imaxpop) + β log

(
Wi

70

)
+ ηi,Imax

)
⇔ Imaxi =

1

1 + exp
(
− logit(Imaxpop)− β log

(
Wi

70

)
− ηi,Imax

)
The last form is used for a typical NMTRAN implementation of a logit-normally distributed parameter
with covariate
LGTIMAX=LOG(POP_IMAX/(1-POP_IMAX)) + BETA*LOG(WT/70) + ETA(IMAX) 5
IMAX=1/(1+EXP(-LGTIMAX))

and in MLXTRAN
# as explicit equation 10
eta_Imax ~ normal(0, omega_Imax)
logitImaxi = log(pop_Imax/(1-pop_Imax)) + beta*lw70 + eta_Imax
Imaxi = 1/(1 + exp(-logitImaxi))

# or using short notation 15
Imax = {distribution=lognormal, typical=Imax_pop, covariate=lw70,

coefficient=beta_Imax, sd=omega_Imax}

Figure 4.14: Logit-normally distributed ’Imax’ with ’Weight’ as covariate.

Log-Normal distributed with complex variability structure

In this example we consider representations of type (1) and (2) only. A typical parameter model with
a continuous covariate, W , for three levels of variability e.g. {centre, subject, occasion} (this will be
explained in detail in next section), see Figure 4.9, reads as follows

(1) Vlik = Vpop
(Wi

70

)β
eη

(1)
l,V eη

(0)
li,V eη

(−1)
lik,V

(2) log(Vlik) = log(Vpop) + β log
(Wi

70

)
+ η

(1)
l,V + η

(0)
li,V + η

(−1)
lik,V
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4.7. Observation model

with

η
(1)
l ∼ N

(
0,Ω(1)

)
, η

(0)
li ∼ N

(
0,Ω(0)

)
, η

(−1)
lik ∼ N

(
0,Ω(−1)

)
with l – centre index, i – subject index, k – occasion index.

4.7 Observation model
Figure 4.15 gives an overview of the Observation Model as implemented in the current version of
PharmML, which covers only continuous data models. A future release will cover discrete data mod-
els, such as categorical, count and time-to-event (greyed out in the figure). An essential component of

Figure 4.15: Observation Model

5
the Observation Model is the Residual Error Model, which applies only to continuous data models.

4.7.1 Residual error model
In this section we consider different forms of the residual error, i.e. this section is about g in the term

g(xij, ψi, ξ)εij

of eq.4.1 with εij ∼ N(0, 1), i.e. a standard normally distributed random variable. We distinguish
between

• models for untransformed data

yij︸︷︷︸
Experimental

data

= f(xij, ψi)︸ ︷︷ ︸
Model

prediction

+ g(xij, ψi, ξi) εij︸ ︷︷ ︸
Residual

error

• transform-both-sides models 10

u(yij)︸ ︷︷ ︸
Transformed
experimental

data

= u
(
f(xij, ψi)

)︸ ︷︷ ︸
Transformed

model
prediction

+ g(xij, ψi, ξi) εij︸ ︷︷ ︸
Residual

error
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4.7. Observation model

• and implicit models

u(yij)︸ ︷︷ ︸
Transformed

experimental data

= U
(
f(xij, ψi), ξi, ε1,ij, ε2,ij, . . .

)︸ ︷︷ ︸
Transformed

model prediction

(4.2)

The untransformed form is a special case of the transform-both-sides form with u ≡ Id, i.e. the
identity transformation. Then for models of both types with εij being normally distributed with mean 0
and variance 1, u(yij) is also normally distributed with mean u(f(xij, ψi)) and the standard deviation
g(xij, ψi, ξi). 5

Possible extensions to the basic models are

• when more than one random variable is applied, i.e. multiple ε’s,

• when more than one type of measurement or observation is defined, or

• when variability, as discussed in section 4.5, is applied to parameters of the residual error model
(see section 4.7.2 for details). 10

4.7.2 Incorporating variability on the residual error model parameters
In analogy to the nested hierarchical structure for the variability on the individual parameters, vari-
ability on residual error model parameters can be defined using the same structure. By doing so, no
new structure is necessary to account for any inter-individual and/or inter-occasion variability of the
residual error model parameters. 15

This allows PharmML to cover the so-called ’ETA-on-EPS’ approach – e.g. IIV on the residual
error model parameters or in other words varying residual error magnitude between individuals, see
Figure 4.16. For example, if an additive residual error model and a log-normal distribution for a is

Figure 4.16: Inter-individual variability of the residual error parameter a. The nested hierarchical
structure is identical to that of structural model parameters.

assumed, then the parameter model reads

log(ai) = log(apop) + ηa, ηa ∼ N (0, ω2
a)

and the observation model reads

yij ∼ N (fij, a
2
i ) : yij = fij + aiεij, εij ∼ N (0, 1).
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4.7. Observation model

4.7.3 Residual error model examples
Currently, there is no library of residual error models but this might change in the future. All of
the following residual error model examples and their different versions can be implemented in the
present version of PharmML:

• Constant/additive:

yij = fij + a εij; εij ∼ N(0, 1)

or yij = fij + εij; εij ∼ N(0, σ2)

• Proportional or constant CV (CCV):

yij = fij + bfij εij; εij ∼ N(0, 1)

or yij = fij(1 + εij); εij ∼ N(0, σ2)

• Combined additive and proportional 1:

yij = fij + (a+ bfij) εij; εij ∼ N(0, 1)

• Combined additive and proportional 2:

yij = fij +
√
a2 + b2f 2

ij εij; εij ∼ N(0, 1)

or yij = fij + a ε1,ij + bfij ε2,ij; ε1,ij ∼ N(0, 1); ε2,ij ∼ N(0, 1);

or yij = fij(1 + ε1,ij) + ε2,ij; ε1,ij ∼ N(0, σ2
1); ε2,ij ∼ N(0, σ2

2);

• Power error model:

yij = fij + b f cij εij; εij ∼ N(0, 1)

• Combined additive and power error model 1:

yij = fij + (a+ bf cij) εij; εij ∼ N(0, 1)

• Combined additive and power error model 2:

yij = fij + aε1,ij + bf cijε2,ij; ε1,ij ∼ N(0, 1); ε2,ij ∼ N(0, 1)

• Two (or more) types of measurements error model:

yij = fij + ASYjε1,ij + (1− ASYj)ε2,ij; ε1,ij ∼ N(0, σ2
1); ε2,ij ∼ N(0, σ2

2)

• Two (or more) types of observations error model:

yij = TYPijf1,ij + (1− TYPij)f2,ij + TYPijε1,ij + (1− TYPij)ε2,ij;
ε1,ij ∼ N(0, σ2

1); ε2,ij ∼ N(0, σ2
2)

Main sources: [Beal et al., 2006] and [Inria POPIX, 2013]. 5

Note 1 In the list above models are pulled together which have the same variance function.

Note 2 Models listed above are the most popular ones in use but the present PharmML structure al-
lows for implementation of virtually any user-defined model. See section ref:XYZ for more examples
and PharmML implementation.

32



CHAPTER 5
Trial design model

5.1 Introduction
In tools such as NONMEM and MONOLIX it has been common practice to encode the trial design 5

in a data file. More specifically parts of the overall problem, e.g. the structural model and the pa-
rameters are explicitly encoded in the model file, while other, design related, parts are encoded in the
data file. This implies that the software tool, when processing the data file, must associate the data
items with model variables in order to recognise all characteristics of a study, such as subject-specific
measurement time points and values, covariates, variability levels, etc. This has clear disadvantages 10

for simulation purposes, because it means that when wanting to change only the design, the data file
has to be changed, an error prone and time consuming work. This is clearly not an ideal situation and
PharmML addresses this issue.

It is important to stress that we have based a major part of the trial design on one of the standards
developed by CDISC "a global, open, multidisciplinary, non-profit organisation that has established 15

standards to support the acquisition, exchange, submission and archive of clinical research data and
metadata" [CDISC, 2013]. Over the recent years, this organisation has worked out a set of standards
widely used in the medical and pharmaceutical research, both in academic and commercial centres.
Using this standard gives us the reassurance that PharmML will be able to represent all trial structures
that we are likely to encounter. 20

5.1.1 Sources of clinical data
Clinical trials are carefully structured and can vary considerably in their complexity. Typically, a trial
will have one or more arms with each arm containing one or more treatment regimens and observation
protocols. Individuals are then allocated to each arm from a population of subjects who have been
screened for their suitability to participate in the trial. In PharmML we describe the structure and 25

population of a trial explicitly in a dedicated section. This differs from some other approaches, but
we feel it makes the clinical trial much clearer to document and easier to encode computationally.

The clinical data comes usually from different sources (and formats) and in PharmML we dis-
tinguish this information by separating it into the following three classes of data dependent on their
origin1: 30

Population The attributes of the individuals in the study: the population in the population model.
Each individual has a weight, an age, a gender and numerous other properties that may or may

1It is interesting to note that the developers of PharML had a similar insight and organised data in a similar way
[NLME Consortium, 2008].
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5.2. Trial Design

not be modelled as covariates in a given model. Importantly, the ’arm’ membership of every
subject/patient is part of this information. In addition, these properties may change over time.

Dosing When and how a drug or drugs are administered to the individuals in the trial.

Measurements These are the observations taken from each individual at specific times during the
study. Such measurements provide the objective data used during parameter estimation and are 5

typically the outputs calculated during a simulation.

5.2 Trial Design
By separating out these classes of information you can see that the information we need to define for
a clinical trial is as follows:

Structure The organisation of the trial, how the subjects are grouped into different treatment groups 10

and what the dosing regimen is within these treatment groups.

Population As above, the properties specific to the individuals, including those that vary over time.

Individual Dosing This is related to the treatment regimens described in the trial structure, but de-
scribes the dosing history for each individual in the study.

The measurement data is then used exclusively for estimation and is encoded in the third major build- 15

ing block of PharmML, in the ’Modelling Steps’.

5.2.1 Structure
To define the Trial Structure we have reused, almost verbatim, the CDISC Study Design Model
[CDISC SDM-XML Technical Committee, 2011], which is an XML representation of a clinical trial.
Figure 5.1 below shows how the CDISC trial structure is organised. It has six main components: 20

Epoch The epoch defines a period of time during the study which has a purpose within the study.
For example a washout or a treatment window. In CDISC Epochs can describe screening or
follow-up periods, which are out of the scope of PharmML. An epoch is usually defined by a
time period.

Arm The arm represents a path through the study taken by a subject. An arm is composed of a study 25

cell for each epoch in the study.

Cell The study cell describes what is carried out during an epoch in a particular arm. There is only
one cell per epoch.

Segment The segment describes a set of planned observations and interventions, which may or may
not involve treatment. Note that in PharmML our definition is more limited and we only de- 30

scribe treatments. A segment can contain one or more activities.

Activity The activity is an action that is taken in the study. Here it is typically a treatment regimen
or a washout.

StudyEvent A study event describes the collection of information about a particular individual. In
CDISC this can be information captured during screening or other non-treatment phases of the 35

clinical trial. But here we restrict it to capturing observations during the treatment. In PharmML
this is how we capture occasions.
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5.2. Trial Design

Figure 5.1: Overview of the basic concept of the Trial Structure: arm, epoch, event and a cell with
segment and activity/treatment as used in the CDISC Study Design Model. See the next figure for an
example.

Figure 5.2: An example of a study with two arms and three epochs: Screen, Treatment and Follow
Up. A segment can contain more then one Activity/Treatment as can be seen in Cell2 with one
Pre-Treatment P and one Treatment X . In this particular example no Event/Occasion is specified.

Figure 5.2 shows one such example of a hypothetical trial consisting of two arms and three epochs:
Screen, Treatment and FollowUp. There are accordingly six cells and segments, each consisting of
one or two activities. Cell2 has the most complex structure carrying two subsequent treatments, Pre-
Treatment P and Treatment X . In this case no Events/Occasions are specified which is an optional
element in the design. 5

Examples of how a trial design is encoded in PharmML can be found in the examples (see chapter
7).

Variability There is one aspect regarding the random variability worth mentioning here. The
<Population> block carries the information about subject level variability and those variability
levels above the subject, see next section for more details. In the <Structure> element we encode 10
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5.2. Trial Design

the variability which is located below the subject. This is typically known as inter-occasion variabil-
ity but deeper levels are allowed in theory. The reader is referred to the section 4.5 where the full
nested hierarchy of the random variability discussed in detail.

5.2.2 Population
This is the second major element of the trial design description where we: 5

• describe the individuals in the study

• describe their attributes (such as weight, gender, etc.)

• assign them to an arm of the study, but also

• indicate if variability at and/or below the subject level is to be defined, which is the case in the
majority of models (if omitted then this means that we explicitly consider a setup without any 10

random variability, which is the case for the naïve pooled data method), and

• indicate their country or centre membership to define higher levels of variability above the
subject level.

We define the possible attributes of all individuals using the IndividualTemplate block and then map
each individual to this template using a Dataset block. 15

5.2.3 Individual dosing
The two previous sections on Structure and Population described information, which is sufficient to
encode e.g. a simple simulation task. Specifically, when the dosing is equal among the patients then
this can be encoded in the Structure part of the schema with one or more dose amounts and one or
more dosing times for all. However, in most cases, especially when we deal with real clinical data 20

this is not so straighforward. Every patient will have its own specific amounts and dosing times.
For an estimation task we always need to provide experimental data for each dosing activity

relevant to the particular case. With the current structure we can provide individual dosing information
for every dosing activity defined in the Structure part (see 5.2.1).

The structure of this part is similar to that used for Population in that first a table template is 25

defined with all relevant columns, i.e. ID , TIME , and DOSE , which is then populated with individual
dosing data.

36



CHAPTER 6
Language Overview

6.1 Introduction
In this chapter we will provide you with the background knowledge you need to understand Phar- 5

mML. We recommend that you read this chapter before you work through the examples in chapter 7.
The chapter will start by describing how a PharmML document is organised and then go on to illus-
trate some of the key concepts and constructs of the language. For example, among other things, we
discuss variable and parameter scoping (section 6.3.2), how to write maths (sections 6.5 and 6.7), and
how to define data (section 6.6). The chapter concludes with a discussion of the additional resources 10

that we expect to be used in support of PharmML, but which are outside the scope of this language
specification (section 6.12).

6.2 Organisation
As can be seen in figure 6.1, PharmML is organised into three main sections: Model Definition, Trial
Design and Modelling Steps. This reflects the natural organisation of a pharmacometric model and is 15

the organisation implicitly found in the M&S tools used by modellers in this area. Below we will go
into more detail about the purpose and organisation of each section.

6.2.1 Model Definition
The Model Definition defines the model, typically a population model, that describes the system
under investigation and any variability between individuals in the population. The modeller may wish 20

to use it for simulation, parameter estimation or other types of analysis and exploration. The Model
Definition in turn is composed of another set of “models” that describe specific aspects of the overall
model definition. These are described below.

Variability Model

Variability is the concept that underpins a pharmacometric model and the Variability Model enables us 25

to describe this. Note that it is possible to describe variability in a PharmML model without defining
random variability, but by using covariates. Therefore the use of the Variability Model is optional. In
PharmML you can use this to define individual random variability, but also a hierarchy of variability
above and/or below the level of the individual (e.g. inter-occasion variability). For more details of the
theory behind the random variability model, see section 4.5. 30
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Model	  Defini+on	  

Modelling	  Steps	  

Structural	  Model	  

Trial	  Design	  

Dosing	  
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Bolus	  
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Simula+on	  Step	  

Es+ma+on	  Step	  

Ini+al	  Assignment	  
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Time	  Points	  
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Related	  Covariates	  
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Con+nuous	  Covariate	  Model	   Categorical	  

Parameter	  Model	  

Observa+on	  Model	  
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Variability	  
Level	  

Figure 6.1: An overview of the organisation of PharmML.

Covariate Model

The Covariate Model as you would expect from the name describes the covariates used in the Model
Definition. A covariate can be continuous, in which case it is typically described by a continuous
probability distribution, or categorical. The formal description of the covariate model can be found in
section 4.6.5. 5

Parameter Model

The Parameter Model principally describes the parameters of the model definition and is typically
used to describe parameters with some level of variability (typically between subject variability).
The parameter is defined more formally in section 4.6, but essentially for each parameter we define
a population term, one or more random effects, and its relationship to the covariates defined in the 10

covariate model. The random effects can be defined at different levels of variability (defined by
the variability model, see section 6.2.1), which includes capturing the correlation between them —
essentially defining a covariance (or correlation) matrix for each level of variability.

Structural Model

At the heart of the model definition are one or more Structural Models. These describe the system or 15

systems that a modeller is interested in and they represent a particular abstraction of that system. For
example a structural model may be used to describe the pharmacokinetics of a drug. We can represent
PK, PD or PK-PD models as combinations of ODEs and algebraic equations.
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Observation Model

In clinical trials experimental observations are made, and these observations are subject to experi-
mental error. Different types of instrument, assay or material sampled will all have different statistical
errors associated with them. In a pharmacometric model these errors are described using a residual er-
ror model (see section 4.7.1). In PharmML we encode the residual error model using the Observation 5

Model.
The outcomes of a clinical trial that we wish to model are not always experimental measurements.

A trial may aim to determine the efficacy of an analgesic using a pain score provided by the subject;
or measure the frequency of seizure based on the maximum drug concentration; or establish the
remission rate over a given time in a cancer trial [Bonate, 2011]. In each of these cases one needs 10

to use a discrete statistical model to represent these outcomes. These will also be defined in the
Observation Model, but at the moment are not supported by the current version of PharmML (see
chapter 3).

6.2.2 Trial Design
Clinical trials are carefully structured and can vary considerably in their complexity. Typically, a 15

trial will be structured into one or more groups with each group subject to one or more treatment
regimens and observation protocols. Each group is then populated with individuals from a population
of subjects who have been screened for their suitability to participate in the trial. In PharmML we
describe the structure and population of a trial explicitly in a dedicated section. This differs from
some other approaches, bit we feel it makes the clinical trial much clearer to document and easier to 20

encode computationally. More information can be found in chapter 5.

6.2.3 Modelling Steps
The final element when describing an M&S experiment, after defining the model and the associated
trial design, is to describe how the model was used. This section of a PharmML document is akin
to the Methods section of a paper. The aim is not to replicate your modelling exactly, but to provide 25

enough information to reproduce the model1.

6.3 Identifiers, references and namespaces
In PharmML we use the Object Identifier to identify components in the Trial Design and Modelling
Steps sections of a PharmML document and the Symbol Identifier to identify parameters and variables
within the Model Definition section. Below we will describe the rules associated with how they are 30

defined and referenced.

6.3.1 Object identifiers
The concept of the Object Identifier is borrowed from the CDISC XML description of a trial design
[CDISC SDM-XML Technical Committee, 2011]. There they use the attribute oid to identify and to
reference components used in the design. Object identifiers have global scope, which means that all 35

object identifiers defined in a PharmML document must be unique.
1To replicate the execution of a model requires detailed information about not only what algorithms were used to

simulate or execute a model, but also what software implementation was used and exact supporting libraries such as that
of the random number generator.
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Elements that reference an object identifier by convention use the attribute oidRef and the id
referred to must exist in the PharmML document. In addition the object referred to must be compatible
with the element referencing it. The example below shows how this works:

<Epoch oid="e1">
<!-- Detail omitted -->

</Epoch>
<Arm oid="a2">

<!-- Detail omitted -->
</Arm>
<Cell oid="c2">

<EpochRef oidRef="e1" />
<ArmRef oidRef="a2"/>
<SegmentRef oidRef="tb"/>

</Cell>

Here the element <EpochRef> refers to the object identifier of the Epoch, “e1”, and the <ArmRef>
element refers to the Arm object, “a2”. This is correct. However, the following example is incor- 5

rect:

<Epoch oid="e1">
<!-- Detail omitted -->

</Epoch>
<Arm oid="a2">

<!-- Detail omitted -->
</Arm>
<Cell oid="c2">

<!-- ERROR: not valid PharmML -->
<EpochRef oidRef="a2" />
<ArmRef oidRef="a2"/>
<SegmentRef oidRef="tb"/>

</Cell>

The <EpochRef> points to the Arm object, which is not compatible with it. These compatibilities
are documented for each element containing an object reference (i.e. an oidRef attribute) in the
XML Schema (see chapter 11).

6.3.2 Blocks and symbol scoping 10

As any other model description language PharmML defines names for the parameters, variables and
parts of the model that need to be uniquely identified. In PharmML we refer to these collectively as
symbols. The rules we apply are relatively simple in that all symbols within a PharmML document
must be unique and that all symbols in the document are ‘visible’. In other words a symbol defined
in one part of a document will be available to a component elsewhere in the document. Symbols in 15

PharmML can be organised into different scopes, which in turn are defined by blocks. We illustrate
this conceptually in the example below2:

<Block blkId="blockID">
...
<Symbol symbId="symbolID">

...
</Symbol>
...
<SymbRef symbIdRef="symbolID"/>

</Block>

<ElsewhereInXMLDocument>
<SymbRef blkIdRef="blockID" symbIdRef="symbolID"/>

</ElsewhereInXMLDocument>

2Note that in the example we use the element <Symbol> to define a symbol and <Block> a block. These are not
actually valid PharmML elements, but we hope to make the scoping discussion clearer by using these.
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The block is given an identifier and is used to organise symbols. Any symbols that are defined within
it are part of the block’s scope. If we refer to that symbol within the block then we do not need to
specify the block name. When referred to outside the block, then the same symbol must be referred
to using a combination of the block identifier (blkId) and symbol identifier (symbId). This is
illustrated more completely in the example below: 5

<Symbol symbId="symb2"/> <!-- Decl 1 -->
<Symbol symbId="symb3"/> <!-- Decl 2 -->

<Block blkId="A">
<Symbol symbId="symb2"/> <!-- Decl 3 -->
<SymbRef symbIdRef="symb2"/> <!-- resolves to Decl 3 -->
<SymbRef symbIdRef="symb3"/> <!-- resolves to Decl 2 -->

</Block>

<Block blkId="B">
<Symbol symbId="symb2"/> <!-- Decl 4 -->
<Symbol symbId="symb3"/> <!-- Decl 5 -->
<SymbRef symbIdRef="symb2"/> <!-- resolves to Decl 4 -->

</Block>

<ElsewhereInXMLDocument>
<SymbRef symbIdRef="symb2"/> <!-- resolves to Decl 1 -->
<SymbRef blkIdRef="A" symbIdRef="symb2"/> <!-- resolves to Decl 3 -->
<SymbRef blkIdRef="B" symbIdRef="symb2"/> <!-- resolves to Decl 4 -->
<SymbRef blkIdRef="B" symbIdRef="symb3"/> <!-- resolves to Decl 5 -->

</ElsewhereInXMLDocument>

Here, the <Symbol> element defines a symbol and <SymbRef> refers to it. As you can see, a sym-
bol can be defined in several places: globally (outside a block) and within blocks A and B. In each
case identical symbIDs are used, but the language can distinguish between them because of the con-
text. This is clear when we look at the symbol references in the <ElsewhereInXMLDocument>
element. Referring to a symbol, for example symbol “symb2” in block A may seem ambiguous, 10

but the scoping rules of PharmML are clear. The reference is resolved first to the scope within the
block and then to the global scope. So in block A the reference to “symb2” points to Decl 3, and
the reference to “symb3” points to the global symbol, Decl 2 and not Decl 5, which is a different
scope. These scoping rules are common to many programming languages. One question you may ask
is what if a globally defined symbol has the same name as a block identifier? This is handled by the 15

symbol namespace rules. Both types of identifier share the same (global) namespace and so cannot
have the same name.

You will notice in the discussion above that we use the words ‘define’ and ‘reference’. These
are important concepts in PharmML. Symbols can be defined only once, but can be referred to many
times. Unlike many languages, such as C or Fortran, symbols can be referred to before they are 20

defined. This may seem odd at first, bit since PharmML is a declarative language (unlike C and
Fortran) it is natural that the order of variable definition is not important. The listing below shows
how this works using real PharmML.

<ct:Variable symbId="c" symbolType="real">
<ct:Assign>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
<Binop op="divide">

<ct:SymbRef symbIdRef="b"/>
<ct:Real>10</ct:Real>

</Binop>
</Equation>

</ct:Assign>
</ct:Variable>
<ct:Variable symbId="a" symbolType="real">

<ct:Assign>
<Equation xmlns="http://www.pharmml.org/2013/03/Maths">

<Binop op="plus">
<ct:SymbRef symbIdRef="b"/>
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<ct:SymbRef symbIdRef="c"/>
</Binop>

</Equation>
</ct:Assign>

</ct:Variable>
<ct:Variable symbId="b" symbolType="real">

<ct:Assign>
<ct:Real>1</ct:Real>

</ct:Assign>
</ct:Variable>

One danger with this approach is that the language syntax does not prevent the creation of cyclic
dependencies between variables. An example of this is shown below where there is dead-lock because
neither variable can be initialised because the other is yet to be defined. Such cycles are forbidden in
PharmML and must be checked for when validating the language.

<!-- ERROR: The declaration below creates a cycle -->
<ct:Variable symbId="d" symbolType="real">

<ct:Assign>
<ct:SymbRef symbIdRef="e"/>

</ct:Assign>
</ct:Variable>
<ct:Variable symbId="e" symbolType="real">

<ct:Assign>
<ct:SymbRef symbIdRef="d"/>

</ct:Assign>
</ct:Variable>

Related to variable definition is the initialisation of a symbol: also known as initial assignment. When 5

a symbol is defined it is in an uninitialised state and has no value. It may be either initialised during
the definition, as in the examples above, or via a subsequent initial assignment as below:

<!-- Symbol defined, but not initialised -->
<ct:Variable symbId="a" symbolType="real"/>
<!-- Omitted detail -->
<ct:VariableAssignment>

<ct:SymbRef symbIdRef="a"/>
<ct:Assign>

<math:Equation>
<math:Binop op="plus">

<ct:SymbRef symbIdRef="a"/>
<ct:Real>10</ct:Real>

</math:Binop>
</math:Equation>

</ct:Assign>
</ct:VariableAssignment>

Either way this can only be done once. Why? This listing illustrates the problem:

<!-- Symbol defined, but not initialised -->
<ct:Variable symbId="a" symbolType="real"/>
<!-- Snip -->

<!-- Incorrect -->
<!-- Duplicate initial assignments here. -->
<ct:VariableAssignment>

<ct:SymbRef symbIdRef="a"/>
<ct:Assign>

<ct:Real>0</ct:Real>
</ct:Assign>

</ct:VariableAssignment>
<ct:VariableAssignment>

<ct:SymbRef symbIdRef="a"/>
<ct:Assign>

<math:Equation>
<math:Binop op="plus">

<ct:SymbRef symbIdRef="a"/>
<ct:Real>10</ct:Real>
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</math:Binop>
</math:Equation>

</ct:Assign>
</ct:VariableAssignment>

At first sight it may seem intuitive to allow variable “a” to be assigned repeatedly in this way, but re-
member that PharmML is a declarative language and the order is not important. When you remember
this then the XML in this listing becomes ambiguous. Which ‘initial’ assignment should be assigned
before the others? Clearly this makes no sense in a declarative language and consequently symbols in
PharmML can only be initialised once. 5

Before we leave symbols and symbol referencing it is worth noting that in PharmML symbol
references between sections only go in one direction. All sections point to the Model Definition, but
not the reverse and the Modelling Steps section points to the Trial Design section, but again not vice
versa. By maintaining this layered dependency structure in the design of PharmML we simplify the
design of the language and ensure that the Model Definition section is guaranteed to be independent 10

of the other PharmML sections.

6.3.3 Interaction between Object and Symbol identifiers
The Object and Block identifier (oid and blkId respectively) both exist in the same PharmML
document and they share the same namespace. This means that they cannot share the same identifier,
as is illustrated below: 15

<Symbol symbId="symb2"/>

<Block blkId="A"> <!-- ERROR -->
<Symbol symbId="symb3"/>

</Block>

<Block blkId="B"> <!-- OK -->
<Symbol symbId="symb4"/>

</Block>

<Oid oid="A"/> <!-- ERROR -->
<Oid oid="Z"/> <!-- OK -->
<Oid oid="symb2"/> <!-- ERROR -->
<Oid oid="symb3"/> <!-- OK -->

Similarly, just as a global symbId cannot share an identifier with a blkId (see section 6.3.2), neither
can it share an identifier (in the above case “symb2”) with an oid.

6.4 Type checking
Symbols in PharmML have a type. By symbol we mean something defined using a symbId attribute
(for example a variable or parameter). Like a variable a type is simply a way we use in PharmML 20

to map symbols to an abstraction: such as a number, a string or a table of values. As you might
expect, symbols with different types are not always compatible with each other, so it is necessary
when validating the correctness of a PharmML document to ensure that the types of its symbols are
compatible with each other. This is known as type checking (see [Aho et al., 1986, Chapter6] and
[Parr, 2010, Chapter 8] for more information). The types in PharmML are enumerated in table 12.3. 25

The types used in PharmML must be consistent. In general this means that all types in an expres-
sion should be identical. This is illustrated in the following example:

<!-- ERROR: incompatible type -->
<ct:Variable symbId="a" symbolType="int">

<ct:Assign>
<ct:String>A value</ct:String>
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</ct:Assign>
</ct:Variable>
<ct:Variable symbId="b" symbolType="boolean"/>
<ct:Variable symbId="c" symbolType="real">

<ct:Assign>
<m:Equation>

<m:Binop op="plus"> <!-- ERROR: Cannot add a real to a Boolean -->
<ct:Real>22</ct:Real>
<ct:SymbRef symbIdRef="b"/>

</m:Binop>
</m:Equation>

</ct:Assign>
</ct:Variable>
<ct:Variable symbId="d" symbolType="real">

<ct:Assign>
<ct:Int>453</ct:Int> <!-- OK -->

</ct:Assign>
</ct:Variable>

You will notice that the variable d is of type real but was initialised with an integer value, and that
this was permitted. This is an exception to the rule that all types must be the same and is a common
mechanism in computer languages, called type promotion. Here the integer value can be converted
to a real with no loss of information and so it is permitted. The reverse conversion is not permitted
because a real value may lose information when converted to an integer. 5

6.5 Defining derivative variables
The easiest way to understand how one defines a derivative in PharmML is to look at an example such
as the listing below:

<ct:DerivativeVariable symbId="Ad" symbolType="real">
<ct:Assign>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
<Binop op="times">

<Uniop op="minus">
<ct:SymbRef blkIdRef="p1" symbIdRef="ka"/>

</Uniop>
<ct:SymbRef symbIdRef="Ad"/>

</Binop>
</Equation>

</ct:Assign>
<ct:IndependentVariable>

<ct:SymbRef symbIdRef="t"/>
</ct:IndependentVariable>
<ct:InitialCondition>

<ct:Assign>
<ct:Real>0</ct:Real>

</ct:Assign>
</ct:InitialCondition>

</ct:DerivativeVariable>

this corresponds to the equation:

dAd

dt
= −ka Ad

Ad(t = 0) = 0

As you can see the derivative variable is defined using the <DerivativeVariable> element
and the right-hand side of the equation is described by the <Assign> element. The independent 10

variable is explicitly defined in this example using the <IndependentVariable>. If it had been
omitted then the derivative would have defaulted to the independent variable set for the PharmML
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document as a whole. Finally its initial condition is set to zero in the <InitialCondition>
element. There are a few points to note about the definition of the derivative:

1. The symbol types on the RHS of the definition are a mixture of derivative variables and non-
derivative variables and parameters. This is allowed.

2. The definition of the variable Ad contains a reference to itself. If this were the definition of a 5

non-derivative type, then this would be regarded as a cyclic dependency and not be permitted,
but in the definition of an ODE it is.

3. The initial condition is applied at t0 for the model, which in PharmML is assumed to be t0 = 0.

6.6 Datasets
The dataset is a key concept in PharmML and is used to describe the data that describes the trial design 10

and the observations used for estimation. Much of this data is tabular and the dataset has therefore
been designed to represent this type of information. The dataset describes data using XML and all
data is explicitly typed.

As usual the simplest way to explain it is to look at an example, such as the code snippet be-
low: 15

<ds:DataSet>
<ds:Definition>

<ds:Column columnId="id" valueType="string" columnNum="1"/>
<ds:Column columnId="arm" valueType="string" columnNum="2"/>
<ds:Column columnId="reps" valueType="int" columnNum="3"/>

</ds:Definition>
<ds:Table>

<ds:Row>
<ct:String>i1</ct:String><ct:String>a1</ct:String><ct:Int>20</ct:Int>

</ds:Row>
<ds:Row>

<ct:String>i2</ct:String><ct:String>a2</ct:String><ct:Int>20</ct:Int>
</ds:Row>
<ds:Row>

<ct:String>i3</ct:String><ct:String>a3</ct:String><ct:Int>40</ct:Int>
</ds:Row>
<ds:Row>

<ct:String>i4</ct:String><ct:String>a4</ct:String><ct:Int>40</ct:Int>
</ds:Row>

</ds:Table>
</ds:DataSet>

As before the dataset has a definition, where the columns of the dataset table are defined. The column
number must start at 1 and each column must be numbered in consecutive order (i.e. 1,2,3,4. . . etc.).
The type of each column is specified and this complies with the PharmML type system. Next the
content of the dataset is held within the <Table> element and this consists of one or more <Row>
elements. Each row must contain an entry for each column defined. NULL values are indicated by 20

the <Null/> element.
This looks like a table in a relational database and indeed this approach is based on the concept of

a relation in relational theory. Therefore the ordering of rows is not significant. At present there is no
mechanism to define a key on the dataset or columns that cannot be NULL. It is assumed that such
restrictions may be applied when the dataset is used. For example it is assumed that when mapping 25

observations in the <EstimationStep> none of the data is NULL and that the combination of the
time column and that identifying the individual are unique.

Finally, there is one deviation from standard relational theory in the dataset. This is that a table can
be nested multiple times, i.e., a table can contain a column that defines another table and so on. This
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id	   arm	   w(ab	   eyes	  

i1	   a1	   blue	  

i2	   a1	   green	  

i3	   a1	   brown	  

i4	   a2	   blue	  

i5	   a2	   green	  

-me	   wt	  

1	   72	  

6	   69	  

12	   70	  

24	   71	  

-me	   wt	  

1	   80	  

6	   81	  

12	   79	  

24	   78	  

Figure 6.2: An illustration of how a table with a nested table can be conceptualised. Each cell within
the wttab column contains another table.

concept is illustrated in figure 6.2. We required this because in some situations it is necessary to define
one to many relationships within the data. For example when defining a population of individuals in
a study whose weight changes during the course of the study (weight is a time-dependent covariate).
In relational theory this is achieved by a foreign key relationship, but in the dataset it is simpler and
clearer if we take advantage of the hierarchical nature of the XML. You can see this in the example 5

dataset below:

<ds:DataSet>
<ds:Definition>

<ds:Column columnId="id" valueType="string" columnNum="1"/>
<ds:Column columnId="arm" valueType="string" columnNum="2"/>
<ds:Table tableId="wttab" columnNum="3">

<ds:Definition>
<ds:Column columnId="time" valueType="real" columnNum="1"/>
<ds:Column columnId="wt" valueType="real" columnNum="2"/>

<ds:Definition>
</ds:Table>
<ds:Column columnId="eyes" valueType="string" columnNum="4"/>

</ds:Definition>
<ds:Table>

<ds:Row>
<ct:String>i1</ct:String><ct:String>a1</ct:String>
<ds:Table>

<ds:Row>
<ct:String>1</ct:String><ct:Real>72</ct:Real>

</ds:Row>
<ds:Row>

<ct:String>6</ct:String><ct:Real>69</ct:Real>
</ds:Row>
<ds:Row>

<ct:String>12</ct:String><ct:Real>70</ct:Real>
</ds:Row>
<ds:Row>

<ct:String>24</ct:String><ct:Real>71</ct:Real>
</ds:Row>

</ds:Table>
<ct:String>blue</ct:String>

</ds:Row>
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<ds:Row>
<ct:String>i2</ct:String><ct:String>a1</ct:String>
<ds:Table>

<ds:Row>
<ct:String>1</ct:String><ct:Real>80</ct:Real>

</ds:Row>
<ds:Row>

<ct:String>6</ct:String><ct:Real>81</ct:Real>
</ds:Row>
<ds:Row>

<ct:String>12</ct:String><ct:Real>79</ct:Real>
</ds:Row>
<ds:Row>

<ct:String>24</ct:String><ct:Real>78</ct:Real>
</ds:Row>

</ds:Table>
<ct:String>green</ct:String>

</ds:Row>
</ds:Table>

</ds:DataSet>

In the example the child table is defined by using a <Table> element instead of the usual <Column>
element and given the identifier “wttab”. Within the nested table definition another set of columns is
specified3. Now when encoding the data within the dataset its rows are defined as before, but where
a column has been replaced by a nested table the contents of this table are delimited by a <Table>
element. The dataset in the example defines individual i1 assigned to arm a1 with a weight that 5

varies between 69 kg and 72 kg during the study.

6.7 Mathematical expressions
Mathematical expressions are a fundamental part of a pharmacometric model and so it was important
that PharmML incorporated the ability to encode these. The question we had in designing the lan-
guage, however, was what is the best way to do this? Our initial approach was to reuse an existing 10

W3C standard called MathML4, which was designed to represent mathematical equations on web
pages. Unfortunately, the full MathML standard is bigger and more complex than we need: indeed
much of the standard focuses on the presentation and layout of mathematical equations rather than
their underlying meaning5. This was also the conclusion reached for similar standards to PharmML
such as SBML [Hucka et al., 2010, Section 3.4], CellML6 and SED-ML [Waltemath et al., 2011]. 15

Their solution to this problem was to use a subset of the standard that did what they wanted and
to develop their own software to support this subset. In effect they created their own version of the
MathML standard. This means that the CellML version of MathML is not compatible with the SBML
version and so on, and as a consequence each standard has had to develop its own software libraries
to support their own version of MathML. 20

Faced with the same dilemma we considered adopting yet another subset of MathML, but decided
against it for a number of reasons:

1. Because MathML is designed for the presentation of maths its basic design is much more com-
plicated than we require.

3Of course this definition can itself contain another table definition ad infinitum.
4http://www.w3.org/TR/MathML3/
5We should emphasise that his is not a criticism of MathML, as this was the problem it was created to solve!
6http://www.cellml.org/specifications/cellml_1.1/#sec_mathematics

47

http://www.w3.org/TR/MathML3/
http://www.cellml.org/specifications/cellml_1.1/#sec_mathematics


6.7. Mathematical expressions

2. The design of MathML is such that it is impossible to validate whether a sensible mathe-
matical expression has been formed using just XML Schema validation7. This is because it
uses <apply></apply> elements to group operands and operators together and so a state-
ment such as <apply><divide/><cn>20/<cn></apply> (÷20) is syntactically valid
MathML, but an incomplete mathematical expression. 5

3. Taking a subset of MathML requires the creation of a new XML Schema definition, new tools
for validation and is effectively creating a new standard. In our view calling this MathML
is misleading as each of the MathML subsets currently used are not the same and cannot be
exchanged with each other, nor with W3C MathML (see discussion above).

Consequently we created our own mathematics definition, which has the following design goals: 10

1. Have a design that ensured that mathematical expressions were syntactically correct — allowing
us to use XML Schema validating software to ensure this correctness.

2. Ensure that the maths could handle all mathematical expressions we require in PharmML.

3. Provide logical expressions for use in piecewise functions.

4. Have a simple and concise design that could be easily written by hand and also read by a 15

developer — to facilitate testing.

Our design follows that of many programming languages, such as C [Kernighan and Ritchie, 1988],
by defining unary and binary operators that take one or two operands respectively. Such operands can
be literal values (e.g. numbers), variables or another operator. In languages such as C, mathematical
expressions are designed to be easily read by humans, but in PharmML we don’t have this restriction 20

and we are more interested in ease of computational processing. For this reason we have adopted a
prefix representation.

In a prefix representation, also called Polish notation8, the operator is placed before its operands.
We can illustrate this using the following expression, (9−5)×2, becomes×−9 5 2. This is evaluated
from left to right. You first evaluate the operator which has operands that are numerical values. The 25

result of this operator is then used as an operand of another operator and the process is repeated until
all operators are evaluated. Using the expression above as an example: −9 5 is evaluated first that
then reduces the expression to ×4 2, until finally we are left with the result of 2. The benefits for the
parser are obvious because we no longer require grouping constructs like parenthesis. As can be seen
in the following listing, this prefix approach fits well with XML and allows us to express the above 30

expression concisely9.

<!-- (9 - 5) * 2 -->
<Equation xmlns="http://www.pharmml.org/2013/03/Maths"/>

<Binop op="times">
<Binop op="minus">

<ct:Real>9</ct:Real>
<ct:Real>5</ct:Real>

</Binop>
<ct:Int>2</ct:Int>

</Binop>
</Equation>

7XML Schema is an XML standard that let’s you effectively define an object model in XML. The benefit of the
standard is that it there many tools that can then validated automatically whether your XML document conforms to this
‘object model’. We have taken advantage of this technology in PharmML and it has made development of the specification
and software support much more efficient.

8For more information see http://en.wikipedia.org/wiki/Polish_notation.
9In fact the XML structure actually defines the abstract syntax tree of the mathematical expression, which is typically

the output of a language parser.
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It also allows us to use XML Schema validation to ensure correctness because we can validate that
all binary operators require two operands and a unary operator one. The more complicated example
below shows how to define the expression exp

(
−logit(i) + β ln

(
W
70

)
+ η
)

with unary and binary
operators:

<?xml version="1.0" encoding="UTF-8"?>
<Equation xmlns="http://www.ddmore.eu/Resources/Maths/1.0"/>

<!-- Omitted namespace declarations -->
<Uniop op="exp">

<Binop op="plus">
<Uniop op="minus">

<Uniop op="logit">
<ct:SymbRef symbIdRef="i"/>

</Uniop>
</Uniop>
<Binop op="plus">

<Binop op="times">
<ct:SymbRef symbIdRef="beta"/>
<Uniop op="ln">

<Binop op="divide">
<ct:SymbRef symbIdRef="W"/>
<ct:Real>70</ct:Real>

</Binop>
</Uniop>

</Binop>
<ct:SymbRef symbIdRef="eta"/>

</Binop>
</Binop>

</Uniop>
</Equation>

Besides mathematical expressions PharmML Maths can also define logical expressions used in 5

conditional logic that enables us to define piecewise functions. This uses the same postfix ap-
proach, but with alternate logical binary and unary operators defined by the <LogicBinop> and
<LogicUniop> elements, respectively. The following example shows how it can be combined with
mathematical expressions to describe the piecewise expression:{

−x if x < 0

x if x ≥ 0

Note that because logical expressions can contain strings it is possible to define such expressions 10

using non-numerical criteria:

<Equation xmlns="http://www.ddmore.eu/Resources/Maths/1.0"/>
<!-- Omitted namespace declarations -->
<Piecewise>

<Piece>
<Uniop op="minus">

<ct:SymbRef symbIdRef="x"/>
</Uniop>
<Condition>

<LogicBinop op="lt">
<ct:SymbRef symbIdRef="x"/>
<ct:Int>0</ct:Int>

</LogicBinop>
</Condition>

</Piece>
<Piece>

<ct:SymbRef symbIdRef="x"/>
<Condition>

<LogicBinop op="geq">
<ct:SymbRef symbIdRef="x"/>
<ct:Real>0</ct:Real>

</LogicBinop>
</Condition>
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</Piece>
</Piecewise>

</Equation>

A complete list of the mathematical and operators that are available is provided in section 12.7.
Here you will also find a description of each operator’s semantics and the permitted types of its
operands.

6.8 Representing statistics
As can be seen in chapter 4, PharmML relies on the ability to use probability distributions to describe 5

the variability in a pharmacometric model. Admittedly, the most commonly used distribution is the
normal distribution (or transformations of it), but our intention is that PharmML will have the flexibil-
ity to describe a wide range of probability distribution types. To do this the languages uses UncertML
version 310, which is an XML Schema based language that aims to “describe and exchange uncer-
tainty”. UncertML supports all the commonly used continuous and discrete probability distributions 10

and so more than adequately supports the needs of PharmML. As an example we can show how the
normal distribution N (0, ω2) can be defined in UncertML.

<NormalDistribution xmlns="http://www.uncertml.org/3.0"
definition="http://www.uncertml.org/distributions/normal">
<mean><rVal>0</rVal></mean>
<stddev><var varId="omega"/></stddev>

</NormalDistribution>

6.9 Time
Time is required by most pharmacometric models and in PharmML it can be referred to explicitly.
The symbol used for the time variable is configurable at the beginning of the document as shown 15

below:

<PharmML xmlns="http://www.pharmml.org/2013/03/PharmML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.pharmml.org/2013/03/PharmML ..."
xmlns:math="http://www.pharmml.org/2013/03/Maths"
xmlns:ct="http://www.pharmml.org/2013/03/CommonTypes"
xmlns:ds="http://www.pharmml.org/2013/08/Dataset"
xmlns:design="http://www.pharmml.org/2013/03/TrialDesign"
writtenVersion="0.1">
<ct:Name>IOV1 with covariates</ct:Name>
<IndependentVariable symbId="t"/>

Rather than time we call the element <IndependentVariable> because this is more correct and
because you could define a model that uses another quantity than time as the independent variable
(e.g. dose in a dose-response model). Note that the independent variable always has a real type.

6.10 Element identifier 20

We know that other resources will wish to interact with PharmML and so we have given some thought
to how best they should refer to specific pieces of information in a PharmML document. Our solution
is to provide every XML element in the document with an optional unique identifier. The listing
below shows how the id attribute is used:

10http://www.uncertml.org
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<FixedEffect id="e10" symbId="beta_V">
<Covariate>

<ct:SymbRef symbIdRef="W"/>
</Covariate>

</FixedEffect>
<FixedEffect id="e13" symbIdRef="beta_Cl">

<Covariate>
<ct:SymbRef symbIdRef="W"/>

</Covariate>
</FixedEffect>
<RandomVariable id="e16" symbId="eta_V">

<ct:VariabilityReference id="e17">
<ct:SymbRef id="e18" blkIdRef="model" symbIdRef="level"/>

</ct:VariabilityReference>
<!-- Snip -->

</RandomVariable>

As you can see the id attribute is optional and need only be used for elements that you want to refer
to. There are no rules other than that the identifier must be unique within the PharmML document.
Thus to refer to a specific part of a document all you need to define is the location of the document and
the identifier. So assuming that the above code snippet is found in a file called “testFile.xml” a suitable
(relative) URI that refers to the random variable in the example might be testFile.xml#e16. 5

The benefit of this approach is that the id attribute can easily be made available programmatically
and searched on with a class library generated from the XML Schema. This mechanism is also used
successfully by SBML [Hucka et al., 2010, Section 6]. You will see in the sections below (sections
6.12.1 and 6.12.3) how we take advantage of this mechanism to annotate and extend a PharmML
document. 10

6.11 Ordering modelling steps
Descriptions in a modelling step are declarative, describing what was done, what algorithms were
used and what their properties were.

E1

S2

S1

E2

S3

Dependencies between Steps Some possible execution orders

S3 E1 S1 S2 E2

E1 S1 S2 E2 S3

First Last

Figure 6.3: An example of the dependencies between modelling steps is shown on the left. The arrow
indicates the direction of the dependency so step S1 is dependent on the successful completion of
step E1. So in this example step E1 must be executed before step S1 and S2, and those steps must
both execute before step E2. On the right-hand figure we show two possible execution orders that
correspond to the task dependecies on the left. It is important to remember that, as in this example,
there can be more than one execution order for a given set of task dependencies.

The Modelling Steps section has two components that describe simulation or estimation tasks.
Multiple tasks can be linked together so that a given estimation task can be placed before a given 15
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simulation task or no order can be given in which case tasks can be executed in parallel or in any
order. A task is ordered by defining its dependent tasks: tasks that must complete successfully before
it can start (see figure 6.3). In this way the modelling steps make no assumptions about how or
where its tasks are executed, but provides enough information for a workflow engine to parallelise the
execution of its tasks successfully, should it wish to. 5

At the moment tasks cannot specify how output is generated from either an Estimation or Sim-
ulation step. A result of this restriction is that it is not possible to exchange information from one
modelling step to another: for example to use the output of an estimation to set the parameter values
in an estimation. We recognise that this is a limitation of the current version and this functionality
will be provided in a future release of PharmML. 10

6.12 Supporting Resources

6.12.1 Metadata: annotating the PharmML document
As has been stated above (Chapter 3), the purpose of the PharmML document is to provide a mathe-
matical and structural description of a pharmacometric model, sufficient for it to be executed. Addi-
tional information, such as a description of the disease process being modelled, the exact estimation 15

algorithm or a publication describing the model is not included in the PharmML document. Typically
called metadata, this information is still very important and so PharmML aims to provide support for
external annotation.

Figure 6.4: This figure illustrates how information in the RDF example is organised. Simply put the
subject of the annotation is on the left and is annotated by the object on the right. The meaning of that
annotation is described by the predicate term labelling the arrow. So reading the top subject from left
to right we understand that element e16 was modified at 14/05/13 at 4:46pm.

We expect such metadata to take the form of ontological annotation and while the detail of what
will be annotated is out of scope of this document we can show how this can work using a standard 20

for describing resources (such as XML documents) called Dublin Core11. Using this ontology we can
describe many things about a PharmML document such as when and by whom it was created or last
updated. Typically such annotation is expressed using a standard called RDF12, which can be updated
and queried using associated software libraries. The following example13 gives you a flavour of what
an RDF annotation of a PharmML document would look like if we were referring to the code snippet 25

in section 6.10.
11For more information see dublincore.org.
12See RDF URL
13This example is available as part of the examples provided with this specification at examples/-

CombineArchive/annotation.xml.
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<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dcterms="http://purl.org/dc/terms/">

<rdf:Description rdf:about="testPharmMLFile.xml">
<dcterms:created>2013-05-12T16:46:18.834+01:00</dcterms:created>
<dcterms:creator>Stuart Moodie</dcterms:creator>
<dcterms:modified>2013-05-15T16:46:25.731+01:00</dcterms:modified>

</rdf:Description>
<rdf:Description rdf:about="testPharmMLFile.xml#e16">
<dcterms:modified>2013-05-14T16:46:25.731+01:00</dcterms:modified>

</rdf:Description>
</rdf:RDF>

The metadata above is encoded in RDF-XML14 and annotates two things. The first <rdf:Descr-
iption> element states when the file was both created and modified and also who created it. The
second <rdf:Description> element points to the XML element in the PharmML document with
an id value of “e16”. In the example in section 6.10 this is the <RandomVariable> element and
so we can deduce that this description is telling us when this element was modified. Another way of 5

looking at RDF information is shown in figure 6.4, which hopefully makes the relationships described
above even clearer. Of course this is a trivial example, but it illustrates how the PharmML document
can be annotated using metadata described in a separate RDF document.

6.12.2 Standard Structural Models
In many, if not the majority, of pharmacometric models the structural model is selected from a stan- 10

dard library. Modelling tools such as NONMEM or Monolix provide large platform specific libraries
[Beal et al., 2006] [Bertrand and Mentré, 2008]. These have the benefit of being both reusable and
optimised to run efficiently on their target platform. With PharmML we want to support both of these
features and so we will be establishing a framework that provides the following:

a model ontology an ontology describing all the models held in the standard library. 15

tool specific mappings using the model ontology this will provide mapping from the models in the
standard library to tool specific models.

We expect that the structural model within the PharmML document will be annotated with the
correct structural model using the model ontology (following the annotation mechanism described
above in section 6.12.1). The model ontology term can be used to identify the appropriate model 20

name for a given modelling tool by using one of the tool-specific mappings. This allows PharmML
to provide a tool-independent description of standard structural models. It also allows conversion
tools to convert a PharmML model into a tool specific encoding that takes advantage of its built-in
structural model library. This process is summarised in figure 6.5.

6.12.3 Extending PharmML 25

As with any standard there will be circumstances when it does not represent all the information that
you would like and it would be convenient to extend it. Typically there are two scenarios where this
is likely to be the case. The first is when the information is genuinely not supported by PharmML.
This may be because it has not been implemented yet, or it may be that there is no consensus about
whether this information should be included or no agreement about the best way to represent it. The 30

second scenario is when you want to add application specific information to a PharmML document.
Perhaps because a tool wishes to use PharmML as its native storage format in which case it would
also want to store information about application settings etc.

14See rdf-xml
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Library	  

Structural	  
Model	  

Ontology	  

Include	  

Annotate	  

Client	  So7ware	  
Read	  annota:on	  

Request	  NONMEM	  
Model	  Name	  

ADVAN2	  

Figure 6.5: A schematic diagram illustrating how the standard library ontology framework is used to
generate target specific code when translating PharmML for a specific M&S tool.

Whatever the reason PharmML can be extended. Like the metadata descriptions above (section
6.12.1) this approach relies on the element identifier (see section 6.10). The recommended approach
is that you develop a separate XML document (typically in a separate file), which we will call the
extension document, using any XML representation you choose. Where information in the extension
document relates to the content of the PharmML document then you can refer to the relevant XML 5

element using its identifier.

DOSE
oral

administration

DEPOT
Central

compartment
Cc

EFFECT

Figure 6.6: This diagram is reproduced from an example in the Monolix user manual [Lixoft, 2012]
and it provides a graphical description of a structural model. In the hypothetical example in the text
we illustrate how you might extend PharmML to link this graphic with the components of the model
it represents.

We can illustrate with an example based on the second scenario we described above: application
specific extensions. In this scenario our software tool provides a graphical interface that lets you
create a pharmacometric model by drawing and connecting shapes such as the diagram in figure 6.6.
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When you save the diagram the application saves both the PharmML that encodes the model and
an extension document that describes the graphical layout and maps the graphical elements to the
relevant parts of the model. The extension document could look like this:

<?xml version="1.0" encoding="UTF-8"?>
<Diagram resource="file:///anotherPharmMLFile.xml">

<Rectangle id="1">
<Name>Dose</Name>
<Bounds x="10" y="10" w="50" h="30"/>
<!-- Omitted other information such as colour and other text-->
<Ref idRef="e35"/>

</Rectangle>
<!-- Omitted -->
<Circle id="3">

<Name>Central</Name>
<Bounds x="10" y="200" w="45" h="45"/>
<!-- Omitted other information such as colour and other text-->
<Ref idRef="e46"/>

</Circle>
<!-- Omitted other shape definitions-->
<Link src="1" tgt="2"/>
<Link src="2" tgt="3"/>
<Link src="3" tgt="4"/>

</Diagram>

The XML describes the shapes of the nodes, their location and the connections between them. What
allows it to extend the PharmML document? First the resource attribute provides a URL describing 5

the location of the PharmML document being extended. Next the <Ref> element defines a reference
that points to an element in the PharmML document. From this information the application is able to
read both the PharmML and the extension documents and then relate the diagram to the relevant part
of the model.

Note that while this is a hypothetical example for PharmML, this type of solution has been im- 10

plemented by a graphical Systems Biology editor called CellDesigner15. It uses SBML as its native
application format: encoding the model in SBML and using SBML’s extension facilities to store
graphical information and other application specific properties.

One final clarification. The extension mechanism does not require an application to use the same
XML elements as described in the example above. The XML content of the extension document is 15

entirely the concern of the application. In order to extend a PharmML document all it must do is:

1. Specify how to find the PharmML document. Using a URI is a good way to do this.

2. Use the element identifier to refer to the content of the PharmML document.

6.12.4 Organising PharmML resources
We expect that PharmML will in normal usage consist of more than one file. From the discussion 20

about annotating (section 6.12.1) and extending (section 6.12.3) PharmML it is clear that both of
these cases require the creation of resources that are closely related to a PharmML document. It is
therefore desirable that they are kept together and exchanged and used together.

An archive file can provide this functionality. It acts as a container, and since it is a file can be eas-
ily exchanged and stored. We recommend that you use an archive based on the emerging COMBINE 25

Archive standard16. It is based on a zip archive and holds additional information that allows you to
identify the modelling resources in the file. The exact details of how it works is outside the scope of

15www.celldesigner.org
16http://co.mbine.org/documents/archive
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COMBINE	  Archive	  

1	  

Metadata	  PharmML	  Housekeeping	  

Manifest.xml	  

metadata.xml	  

Extension1.xml	  

Extension2.xml	  

Graphics.png	  

Paper.pdf	  

NONMEM.ctl	  

Figure 6.7: An overview of how a COMBINE archive may be used to hold XML documents and files
associated with a model encoded in PharmML. In this example the archive holds the model and its
metadata (in red) and two application specific extension documents (in blue). This also shows another
advantage of using the archive: you can store other useful information, such as the original model file,
relevant papers or images (in green). Finally, the archive contains a metadata file (in black) that helps
an application reading the archive make sense of what it contains.

this document, but the components of the archive and how it can be used to hold PharmML related
resources is illustrated in figure 6.717.

6.12.5 Software support for PharmML
PharmML is a complex language. It is designed using an industry standard, XML Schema18, which
gives us the ability to use widely available software packages to verify that the XML file is correctly 5

written and that elements are put in the right place (syntax checking). However, PharmML describes
a pharmacometric model and so there is a lot of information that is very specific to this domain and
cannot be validated by standard tools. That’s why we need PharmML specific software tools and
libraries. Without such software the burden of validation falls on the modelling tools reading and
writing PharmML. Given the complexity of PharmML’s validation rules it is unlikely that such vali- 10

dation would be complete and implemented consistently, which makes our goal of exchange between
modelling tools less likely to succeed.

Therefore in parallel to the development of this specification a software library called libPhar-
mML19 is being developed to support it. This will allow you do the following:

1. Create a new PharmML document. 15

2. Read an existing PharmML document from a file (or other resource).

3. Write a PharmML document to a file (or resource).
17An example of a CombineArchive file that contains a metadata file annotating a PharmML document can be found

in examples/CombineArchive/archive.zip.
18http://www.w3.org/XML/Schema
19For more information see the libPharmML specification in the DDMoRe Interface Europe document repository:

WP2 deliverables: D2.2 libPharmMLTechSpec.
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4. Validate that a PharmML document complies with the XML Schema definition and the rules
set out in this specification.

The library is implemented in Java. There are no plans to implement an equivalent version in another
programming language, such as C++, but this could be done if there was sufficient demand for it and
sufficient developer resources were available to implement it. 5
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CHAPTER 7
Worked Examples

7.1 How this chapter is organised
In developing PharmML we have found it very useful to explain the language using examples. By 5

taking you through some pharmacometric models that you are familiar with we also hope to help you
understand how they correspond to the XML representation in PharmML. Each example is designed
to illustrate different aspects of PharmML and our aim is that by the end of this chapter you will
understand the language and what it can do and — perhaps equally importantly — what it cannot do.
For clarity and to save space we will only show key excerpts from the examples, but the complete 10

examples are available and will be distributed with this document.
Figure 7.1 shows an comparison in the structure to be implemented for a typical simulation and

estimation task. Boxes underline elements where the structure of PharmML for these two tasks differs.

Figure 7.1: PharmML building blocks used in the trial definition for an estimation and simulation
task. Boxes underline elements where the structure of PharmML for these two tasks differs. (T)
indicates that tabular data structure is used.
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7.2 Example 1: Simulation, PK + PD response

7.2.1 Description
The following example is based on the CTS1 use case [Lavielle and Grevel, 2011]. Both PK (the drug
concentration) and PD (the drug effect) are simulated. A one compartment PK model is linked to an
indirect response PD model, see Figure 7.2 for a typical simulation result for one patient. 5

Figure 7.2: Simulated combined model as defined in the example with PK (blue) and PD (green) time
courses for one subject. Here three doses were administered every 48h.

Model Definition

Structural model This is an oral one compartment model and an indirect response model with
parameters ka, V , CL, Imax , IC50 , Rin and kout .

k =
CL

V
(7.1)

dAd

dt
= −ka× Ad

dAc

dt
= ka× Ad− k × Ac

dE

dt
= Rin×

(
1− Imax × Cc

Cc + IC50

)
− kout× E

Cc =
Ac

V

initial conditions:

E(t = 0) =
Rin

kout
(7.2)

Ad(t = 0) = 0

Ac(t = 0) = 0

Covariate model The only covariate is Weight, W , and it is a continuous covariate:

W ∼ N (popW , ωW ) (7.3)
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The following transformation is applied:

log(W/70) (7.4)

and the initial values are:

popW = 70.07, ωW = 14.09

Parameter model

PK parameters The model uses the following individual parameters:

ka absorption rate constant

V volume of distribution

CL clearance of elimination 5

All follow a log-normal distribution:

log(kai) = log(popka) + ηka,i (7.5)
log(Vi) = log(popV ) + β1,V log(Wi/70) + ηV,i (7.6)

log(CLi) = log(popCL) + β1,CL log(Wi/70) + ηCL,i

where

ηka,i ∼ N(0, ωka), ηV,i ∼ N(0, ωV ), ηCL,i ∼ N(0, ωCL)

with initial values:

popka = 1, ωka = 0.6 popV = 8, ωV = 0.2

popCL = 0.13, ωCL = 0.2 β1,V = 1, β1,CL = 0.75

ρV,CL = 0.71

PD parameters The model uses the following individual parameters:

Imax maximal antagonistic response

IC50 concentration giving half the maximal response

Rin input (synthesis) rate 10

kout output (elimination) rate

All follow a log-normal distribution, except Imax , which follows a logit-normal distribution.

logit(Imaxi) =logit(popImax) + ηImax,i

log(IC50i) = log(popIC50) + ηIC50,i

log(Rin i) = log(popRin) + ηRin,i

log(kout i) = log(popkout) + ηkout ,i

1Correration coefficient between ηV,i and ηCL,i
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where

ηImax,i ∼ N(0, ωImax), ηIC50,i ∼ N(0, ωIC50),

ηRin,i ∼ N(0, ωRin), ηkout ,i ∼ N(0, ωkout)

with initial values:

popImax = 0.9, ωImax = 2 popIC50 = 0.4, ωIC50 = 0.4

popRin = 5, ωRin = 0.05 popkout = 0.05, ωkout = 0.05

Variance-covariance matrix The full variance-covariance matrix for the random effects is:

Ω =



ω2
ka 0 0 0 0 0 0

ω2
V ωV,CL 0 0 0 0

ω2
CL 0 0 0 0

ω2
Imax 0 0 0

ω2
IC50 0 0

ω2
Rin 0

ω2
kout


(7.7)

where

ωV,CL = ωV ωCL ρV ,CL

Observation model We apply a residual error model to the output variables Cc and E from the PK
and PD models respectively.

Output Variable Cc E

Observation Name Concentration PCA
Units mg/l %
Type Continuous Continuous
Model Combined Constant
Parameters a = 0.5, b = 0.1 a = 4

Trial Design

Figure 7.3 shows the Structure of this example consisting of four arms and one epoch, meaning there 5

are four treatment types for which only one time period needs to be specified.
The dosing regimen for the trial is given for each arm below. Note that all dosing is bolus dosing

(discrete administration at specific times) and all doses are administered to the same compartment.

Arm 1 2 3 4

Number of subjects 20 20 40 40
Dose target Ad Ad Ad Ad
Dosing Amount 0.25 0.5 0.5 1
Dose Units mg/kg mg/kg mg/kg mg/kg
Dose per kg yes yes yes yes
Dosing times (h) 0:24:192 0:48:192 0:24:192 0:48:192
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Figure 7.3: Design overview: this study consists of four arms and one epoch. The differences between
arms lie in the number of subjects, dose amount and times. See table below for the details.

Modelling Steps

Time of measurement for PK and PD happens according to different schedules and these observation
time points are produced by the simulation. The output variables to be generated by the simulation
and their associated time points are shown below:

Output Variable Cc E

Observation times [0.5,4 : 4 : 48,52 : 24 : 192,192 : 4 : 250] 0 : 24 : 288
5

7.2.2 PharmML Document Structure
An overview of the model with the key sections collapsed as shown in this listing

<?xml version="1.0" encoding="UTF-8"?>
<PharmML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.pharmml.org/2013/03/PharmML"
xsi:schemaLocation="http://www.pharmml.org/2013/03/PharmML
http://www.pharmml.org/2013/03/PharmML"
xmlns:math="http://www.pharmml.org/2013/03/Maths"
xmlns:ct="http://www.pharmml.org/2013/03/CommonTypes"
xmlns:ds="http://www.pharmml.org/2013/08/Dataset"
xmlns:mdef="http://www.pharmml.org/2013/03/ModelDefinition"
xmlns:mstep="http://www.pharmml.org/2013/03/ModellingSteps"
xmlns:mml="http://www.pharmml.org/2013/03/PharmML"
writtenVersion="0.1">
<ct:Name>Example 1 - continuous PK/PD</ct:Name>
<IndependentVariable symbId="t"/>
<FunctionDefinition xmlns="http://www.pharmml.org/2013/03/CommonTypes"

symbId="constantErrorModel" symbolType="real">
<!-- omitted details -->

</FunctionDefinition>
<FunctionDefinition xmlns="http://www.pharmml.org/2013/03/CommonTypes"

symbId="combinedErrorModel" symbolType="real">
<!-- omitted details -->

</FunctionDefinition>
<ModelDefinition xmlns="http://www.pharmml.org/2013/03/ModelDefinition">

<!-- omitted details -->
</ModelDefinition>
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<TrialDesign xmlns="http://www.pharmml.org/2013/03/TrialDesign">
<!-- omitted details -->

</TrialDesign>
<ModellingSteps xmlns="http://www.pharmml.org/2013/03/ModellingSteps">

<!-- omitted details -->
</ModellingSteps>

</PharmML>

illustrates the main sections of the model as described in section 6.2. The key points to note are the
use of the independentVariable attribute to set the time variable to t (c.f. section 6.9), and
how the element Name defines the name of the model. In addition the top-level PharmML element
contains a number of attributes prefixed xmlns. These are required by the XML Schema standard
and can be ignored as we go through the examples2. 5

The above listing introduces a concept and XML element that we did not describe before: this is
the <FunctionDefinition> element. It defines a function that returns a real type as shown in
the following listing

<FunctionDefinition xmlns="http://www.pharmml.org/2013/03/CommonTypes"
symbId="combinedErrorModel" symbolType="real">
<FunctionArgument symbId="a" symbolType="real"/>
<FunctionArgument symbId="b" symbolType="real"/>
<FunctionArgument symbId="f" symbolType="real"/>
<Definition>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
<Binop op="plus">

<ct:SymbRef symbIdRef="a"/>
<Binop op="times">

<ct:SymbRef symbIdRef="b"/>
<ct:SymbRef symbIdRef="f"/>

</Binop>
</Binop>

</Equation>
</Definition>

</FunctionDefinition>

The function takes three arguments of scalar type and defines the function:

combinedError(a, b, f) = a+ bf

This function is used to encode the combined error model function used later in the observation model 10

(see section 7.2.3).

7.2.3 Model Definition
As you can see in the following listing

<ModelDefinition xmlns="http://www.pharmml.org/2013/03/ModelDefinition">
<VariabilityModel blkId="model" type="model">

<!-- omitted details -->
</VariabilityModel>
<VariabilityModel blkId="obsErr" type="error">

<!-- omitted details -->
</VariabilityModel>
<CovariateModel blkId="c1">

<!-- omitted details -->
</CovariateModel>
<ParameterModel blkId="p1">

<!-- omitted details -->
</ParameterModel>

2If you want to learn more about the technical aspects of XML and the XML Schema standard used to define Phar-
mML then we recommend to start here: http://www.w3.org/TR/xmlschema-0/. And, by the way, xmlns
stands for XML namespace.
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<StructuralModel blkId="main">
<!-- omitted details -->

</StructuralModel>
<ObservationModel blkId="o1">

<!-- omitted details -->
</ObservationModel>
<ObservationModel blkId="o2">

<!-- omitted details -->
</ObservationModel>

</ModelDefinition>

the model definition section defines the main components that you will see in the subsequent
examples. Apart from the structural model, all of these elements are optional and all follow the
scoping rules described in section 6.3.2.

Variability Model

Figure 7.4: There is only one level of variability in this example – inter-individual variability.

From the listing above one can also see that there are two variability models defined using the 5

element <VariabilityModel>. This is how we explicitly define the level of variability in the
model (c.f. section 4.5). In this case there is one level of variability, the inter-individual, Figure 7.4
and the residual error model variability, see the following listing

<VariabilityModel blkId="model" type="model">
<Level symbId="indiv">

<ct:Name>Individual Variability</ct:Name>
</Level>

</VariabilityModel>
<VariabilityModel blkId="obsErr" type="error">

<Level symbId="residual">
<ct:Name>Residual Error</ct:Name>

</Level>
</VariabilityModel>

for the details of the implementation. Please, note that we use two different variability attribute types,
model and error. The former stands for random variability associated with the parameters, as de- 10

scribed in section 4.5. For this example we are defining one level of variability in the parameter model
and this corresponds to variability between subjects. The latter stands for residual error variability.

We will explain this more fully below when we look at examples with more complex variability
models (section 7.5.3).

Covariate Model 15

The <CovariateModel> block corresponds to the covariate model defined in section 4.6.5. In this
example, as shown in this listing

<CovariateModel blkId="c1">
<SimpleParameter symbId="pop_W"/>
<SimpleParameter symbId="omega_W"/>
<Covariate symbId="W">
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<Continuous>
<NormalDistribution xmlns="http://www.uncertml.org/3.0"

definition="http://www.uncertml.org/distributions/normal">
<mean>

<var varId="pop_W"/>
</mean>
<variance>

<var varId="omega_W"/>
</variance>

</NormalDistribution>
<Transformation>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
<Uniop op="log">

<Binop op="divide">
<ct:SymbRef symbIdRef="W"/>
<ct:Real>70.0</ct:Real>

</Binop>
</Uniop>

</Equation>
</Transformation>

</Continuous>
</Covariate>

</CovariateModel>

we are defining a continuous covariate, W , indicated by the <Continuous> element and the co-
variate is sampled from a normal distribution as in equation 7.3. The element <Transformation>
beneath the definition of the distribution describes the transformation applied to this covariate when-
ever it is used. In this case the transformation being applied is defined in equation 7.4.

Parameter Model 5

All parameters in the current example 1 can be defined using the Gaussian model with linear co-
variates (see section 4.6). We will start with a simple case in this example, shown in the following
listing

<ParameterModel blkId="p1">
<!-- other parameters ... -->
<!-- ka -->
<SimpleParameter symbId="pop_ka"/>
<SimpleParameter symbId="omega_ka"/>
<RandomVariable symbId="eta_ka">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0"

definition="http://www.uncertml.org/distributions/normal">
<mean><rVal>0</rVal></mean>
<stddev><var varId="omega_ka"/></stddev>

</NormalDistribution>
</RandomVariable>
<IndividualParameter symbId="ka">

<GaussianModel>
<Transformation>log</Transformation>
<LinearCovariate>

<PopulationParameter>
<ct:Assign>

<ct:SymbRef symbIdRef="pop_ka"/>
</ct:Assign>

</PopulationParameter>
</LinearCovariate>
<RandomEffects>

<ct:SymbRef symbIdRef="eta_ka"/>
</RandomEffects>

</GaussianModel>
</IndividualParameter>
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the absorption rate constant ka. First the typical value for ka, pop_ka and the standard deviation of
the random effect, ω_ka, are defined as <SimpleParameter>’s. Then the random effect eta_ka
is defined, and it follows a normal distribution with mean 0 and standard deviation ω_ka.

Then the actual individual parameter ka is defined with the <Transformation> attribute set
to log. This tells us that the parameter is log-transformed. We are using the Gaussian model de- 5

scribed previously (section 4.6), and it follows a log-normal distribution with the mean pop_ka and
the standard deviation omega_ka, as shown in equation 7.5. Even though ka is modelled without a
covariate, we still use the element <LinearCovariate>, which contains here logically only the
typical value element <PopulationParameter>.

The <RandomVariable> element is very important here. It tells us what the random effect is, 10

and, by assigning a variability level to the attribute symbIdRef within the <VariabilityRef-
erence> element, it effectively tells us that the random effect is sampled for every subject. The
importance of this will become clearer in later examples that describe multiple levels of variability.
Note that the <RandomVariable> element also defines a new symbol eta_ka, which is a parame-
ter. 15

Of course not all parameter definitions are so straight forward. In the following listing

<ParameterModel blkId="p1">
<!-- V -->
<SimpleParameter symbId="beta_V"/>
<SimpleParameter symbId="pop_V"/>
<SimpleParameter symbId="omega_V"/>
<RandomVariable symbId="eta_V">

<!-- identical to previous example -->
</RandomVariable>
<IndividualParameter symbId="V">

<GaussianModel>
<Transformation>log</Transformation>
<LinearCovariate>

<PopulationParameter>
<ct:Assign>

<ct:SymbRef symbIdRef="pop_V"/>
</ct:Assign>

</PopulationParameter>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="W"/>
<FixedEffect>

<ct:SymbRef symbIdRef="beta_V"/>
</FixedEffect>

</Covariate>
</LinearCovariate>
<RandomEffects>

<ct:SymbRef symbIdRef="eta_V"/>
</RandomEffects>

</GaussianModel>
</IndividualParameter>

you can see the definition of a parameter, V , that is related to the covariate, W . We do this using the
element <Covariate> to indicate there is a relationship. Then we reference the specific covariate
(using the <SymbRef> element) and describe the fixed effect relating the covariate to this parameter:
in this case we are referring to the parameter beta_V . We define here a linear covariate model when 20

relating covariates to parameters (c.f. section 4.6.5), so this example corresponds to equation 7.6.
You may have noticed that in equation 7.6 the covariate term is log (W/70) and not W . Why?

Well we have applied the covariate transformation defined in (7.4). As we described above (sec-
tion 7.2.3), whenever a covariate is used here we always apply any transformation defined in the
<Transformation> element. 25

Having defined the individual and other parameters in the parameter model we need to describe
the correlation of the random effects, if any. As described above (see section 4.6.4 for a complete
description) we do this using a covariance matrix. In PharmML, if the random effects of both param-
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eters follow a normal distribution, then we assume that the diagonal of the covariance matrix can be
derived from the variance or standard deviation of each parameter (c.f section 4.6.4). This is true in
our example, so we only need to define the parts of the covariance matrix that define the correlation
between parameters V and CL as shown in this listing

<Correlation>
<ct:VariabilityReference>

<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>
</ct:VariabilityReference>
<RandomVariable1>

<ct:SymbRef symbIdRef="eta_V"/>
</RandomVariable1>
<RandomVariable2>

<ct:SymbRef symbIdRef="eta_Cl"/>
</RandomVariable2>
<CorrelationCoefficient>

<ct:SymbRef symbIdRef="rho_V_Cl"/>
</CorrelationCoefficient>

</Correlation>

Notice that with the symbIdRef attribute the correlation is associated with the variability level 5

defined at the beginning of the model definition. This allows us to define a covariance matrix for each
level of variability in the model and thus to define different parameter correlations at each level as
well. This single <Correlation> element is all we need to define the covariance matrix mentioned
above (section 7.2.1).

You now know most of the structures used to define a parameter in PharmML. As you will see 10

later, these elements can be combined to create more complicated parameter models, but these are
elaborations of this framework.

Structural Model

In PharmML the structural model can be described using algebraic equations or an ODE system. In
this example the model is defined as a combination of an ODE system and some supporting algebraic 15

equations (c.f. equation 7.1).
The following listing

<StructuralModel blkId="main">
<ct:Variable symbId="k" symbolType="real">

<ct:Assign>
<Equation xmlns="http://www.pharmml.org/2013/03/Maths">

<Binop op="divide">
<ct:SymbRef blkIdRef="p1" symbIdRef="Cl"/>
<ct:SymbRef blkIdRef="p1" symbIdRef="V"/>

</Binop>
</Equation>

</ct:Assign>
</ct:Variable>
<ct:DerivativeVariable symbId="Ad" symbolType="real">

<ct:Assign>
<Equation xmlns="http://www.pharmml.org/2013/03/Maths">

<Binop op="times">
<Uniop op="minus">

<ct:SymbRef blkIdRef="p1" symbIdRef="ka"/>
</Uniop>
<ct:SymbRef symbIdRef="Ad"/>

</Binop>
</Equation>

</ct:Assign>
<ct:IndependentVariable>

<ct:SymbRef symbIdRef="t"/>
</ct:IndependentVariable>
<ct:InitialCondition>

<ct:Assign>
<ct:Real>0</ct:Real>
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</ct:Assign>
</ct:InitialCondition>

</ct:DerivativeVariable>

illustrates how the variable k is defined. We cover this in more detail in chapter 6, but briefly: k is
defined as having a real type and is assigned the result of the expression CL/V , which are parameters
defined in the parameter model, p1 . We can also see how the derivative Ad is defined using the
element <DerivativeVariable> (see section 6.5 for a more detailed explanation) with t as the
independent variable. The full ODE defined is: 5

dAd

dt
= −ka Ad

where ka is a parameter defined in the parameter model p1 . Finally the <InitialCondition>
element defines the initial value for Ad at time 0, here Ad(t=0)=0, which is the default initial time
in PharmML.

Observation Model

In this example there are two observations for the continuous variables Cc and E , which are outputs 10

from the structural model. As described above each has a residual error model applied to it.
The XML is very similar for both variables so in the following listing

<ObservationModel blkId="o2">
<SimpleParameter symbId="a"/>
<SimpleParameter symbId="b"/>
<RandomVariable symbId="epsilon_Cc">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="obsErr" symbIdRef="residual"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0"

definition="http://www.uncertml.org/distributions/normal">
<mean><rVal>0</rVal></mean>
<stddev><var varId="sigma_Cc"/></stddev>

</NormalDistribution>
</RandomVariable>
<Standard symbId="Cc">

<Output>
<ct:SymbRef blkIdRef="main" symbIdRef="Cc"/>

</Output>
<ErrorModel>

<ct:Assign>
<math:Equation>

<math:FunctionCall>
<ct:SymbRef symbIdRef="combinedErrorModel"/>
<math:FunctionArgument symbId="a">

<ct:SymbRef symbIdRef="a"/>
</math:FunctionArgument>
<math:FunctionArgument symbId="b">

<ct:SymbRef symbIdRef="b"/>
</math:FunctionArgument>
<math:FunctionArgument symbId="f">

<math:Equation>
<ct:SymbRef blkIdRef="main" symbIdRef="Cc"/>

</math:Equation>
</math:FunctionArgument>

</math:FunctionCall>
</math:Equation>

</ct:Assign>
</ErrorModel>
<ResidualError>

<ct:SymbRef symbIdRef="epsilon_Cc"/>
</ResidualError>

</Standard>
</ObservationModel>
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we only show how the residual error model for Cc, the continuous PK variable, is defined. First the pa-
rameters of the residual error model a and b are defined using <SimpleParameter>; here a com-
bined additive and proportional error model is applied. Then epsilon_Cc as <RandomVariable>
of the residual error model with a mean of 0 and standard deviation sigma_Cc is defined to be used
in the subsequent parts of the model. Note that we need to indicate the type and level of the according 5

random effect which were defined in the ’Variability Model’ section above. This is done using the
<VariabilityReference>

The subsequent element <Standard> states that we are defining a standard continuous observa-
tion model. This means in short that we can define an observation model of the form yij = fij+g×εij
(for details, see the discussion below and section 4.7). 10

The attribute symbId of <Standard> defines the name of the variable that will hold the result
of the applied residual error model. The <Output> element then defines the variable in the structural
model that the residual error model applies to (in this case Cc). Next we define the actual residual
error model with the <ErrorModel> element. The error model is invoked by calling the function
combinedErrorModel defined in the symbol definition at the beginning of the PharmML document 15

(see section 7.2.2). We pass in the appropriate parameter values (see section 4.7.1 for a description of
the residual error model) and this defines our residual error model.
Finally we use the <ResidualError> element to reference the epsilon_Cc specified before.

Residual model implementation Most residual error model types have two or three equivalent
forms, by which we mean they have the same variance, although they use one or more residual errors, 20

εij , see examples in section 4.7.3. Other types contain two or more predictions from the structural
model, fij . From a computational point of view it makes a lot of sense to reflect such differences
in the language structure. This was the motivation to allow for the implementation of two types of
observation models

• <Standard> – any observation model of the form

u(yij) = u(fij) + g × εij

which can be defined using exactly one of the following items 25

– a transformation, u, e.g. log or logit

– one structural model prediction, fij
– one standard deviation function, g

– one random variable, εij

• <General> – using any number of the items listed above and arbitrary functional relationship 30

between them.

This chapter contains more examples illustrating these constructs.

7.2.4 Trial Design
Structure

In this fairly simple case, there is only one epoch and four arms, Arm_1 , Arm_2 etc., cf. Figure 7.3. 35

The resulting four cells Cell_1 , Cell_2 etc. each correspond to one arm and contain one segment.
Figure 7.5 (right) illustrates the inter-relationship between cells, arms, epochs and segments. Here a
segment consists of one activity – a certain type of treatment. In general, a segment can contain more
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Figure 7.5: (left) General cell hierarchy; (right) How it is applied in example 1. There is only one
epoch and four arms, Arm_1 , Arm_2 etc. The resulting four cells Cell_1 , Cell_2 , etc. each corre-
spond to one arm and contain one segment. See the listing bellow for how these features are imple-
mented and structured.

than one activity. Dosing regimen can be defined for different compartments in the structural model.
In this example there are four treatments with one dosing regimen per treatment.

In the following listing

<Activity oid="d1">
<Bolus>

<DoseAmount inputType="target">
<ct:SymbRef blkIdRef="main" symbIdRef="Ad"/>
<ct:Assign>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
<Binop op="times">

<ct:Real>0.25</ct:Real>
<ct:SymbRef blkIdRef="c1" symbIdRef="W"/>

</Binop>
</Equation>

</ct:Assign>
</DoseAmount>
<DosingTimes>

<ct:Assign>
<ct:Sequence>

<ct:Begin><ct:Int>0</ct:Int></ct:Begin>
<ct:StepSize><ct:Int>24</ct:Int></ct:StepSize>
<ct:End><ct:Int>192</ct:Int></ct:End>

</ct:Sequence>
</ct:Assign>

</DosingTimes>
</Bolus>

</Activity>

we show an activity defined for Arm_1 , here treatment in the form of a bolus administration: the
others are very similar. The <Activity> element is given an identifier, “d1”, and the element 5

<Bolus> defines a bolus administration3. <DoseAmount> defines the amount of drug to be ad-
ministered. The are basically two options here. Either the dose is assigned to the variable defined by
an ODE, such is the case here, for which we use inputType="target" attribute or the dosing
variable D as in algebraic equations. Additionally, in this case the administration is adjusted for body
weight using the expression 0.25W . The element <SymbIdRef> defines the target of dosing. This 10

effectively defines an input function that adds the dose amount to the variable Ad at the specified dos-
ing time. The dosing times themselves are given by the <DosingTimes> element as the sequence
0 : 24 : 192.

3Bolus and infusion are the only types of dosing regimen permitted. We make no distinction between oral and IV
administration as such differences are handled by the structural model used.
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Once the segments with their according treatments/activities are defined, we can define epochs
using the element <Epoch> with their start and stopping time along with their order. After the arms
are specified, the <Cell> element is used to put all of the components together, see this listing

<Structure>
<Epoch oid="e1">

<Start>
<ct:Real>0</ct:Real>

</Start>
<End>

<ct:Real>300</ct:Real>
</End>
<Order>1</Order>

</Epoch>
<Arm oid="a1"/>
<Cell oid="c1">

<EpochRef oidRef="e1" />
<ArmRef oidRef="a1"/>
<SegmentRef oidRef="ta"/>

</Cell>
<Segment oid="ta">

<ActivityRef oidRef="d1"/>
</Segment>

Population

The <Population> is the second and in the case of a simulation example, also the last block in 5

the trial design definition. As explained in chapter 5 this is the place to define the number of subjects
per study arm, constant or time-varying covariates and other properties, if available. In this particular
case covariates are simulated according to the definition in eq.7.3. This is the reason the following
table with population data will have only three columns. (In case of estimation the covariates would
have to be listed explicitly in this table as well, this will be described in the next example 7.4) 10

The definition of the table is in the <IndividualTemplate> block where the columns id , arm
and reps are specified, see the following listing

<Population>
<ct:VariabilityReference>

<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>
</ct:VariabilityReference>
<IndividualTemplate>

<IndividualMapping>
<ds:ColumnRef columnIdRef="id"/>

</IndividualMapping>
<ArmMapping>

<ds:ColumnRef columnIdRef="arm"/>
</ArmMapping>
<ReplicateMapping>

<ds:ColumnRef columnIdRef="reps"/>
</ReplicateMapping>

</IndividualTemplate>
<ds:DataSet>

<ds:Definition>
<ds:Column columnId="id" valueType="string" columnNum="1"/>
<ds:Column columnId="arm" valueType="string" columnNum="2"/>
<ds:Column columnId="reps" valueType="int" columnNum="3"/>

</ds:Definition>
<ds:Table>

<ds:Row>
<ct:String>i1</ct:String><ct:String>a1</ct:String><ct:Int>20</ct:Int>

</ds:Row>
<!-- arms 2 & 3 omitted -->
<ds:Row>

<ct:String>i4</ct:String><ct:String>a4</ct:String><ct:Int>40</ct:Int>
</ds:Row>

</ds:Table>
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</ds:DataSet>
</Population>

Using the reps variable allows us to shorten the definition in cases where all other features are the
same across subjects in an arm, which is the case here. Here four arms with 20, 20, 40 and 40 subjects,
respectively, are defined. An alternative would be to list all subjects explicitly, in which case only two
columns would be sufficient, id and arm.
In the estimation case another block <IndividualDosing> would have to be defined as next. 5

This will be explained in the following example 7.4.

7.2.5 Modelling Steps
Simulation settings and dependencies

In the following listing

<ModellingSteps xmlns="http://www.pharmml.org/2013/03/ModellingSteps">
<SimulationStep oid="s1">
<!-- omitted initial values and observations -->
</SimulationStep>
<StepDependencies>

<Step>
<ct:OidRef oidRef="s1"/>

</Step>
</StepDependencies>

</ModellingSteps>

you can see the structure of the <ModellingSteps> section of PharmML. In this example we are 10

describing a simulated model and so use the <SimulationStep> element.
The first part of the simulation block sets initial values for parameters in the model and defines

the outputs of the simulation. We will go into more detail on these elements below. Then at the end
of the modelling steps block is the <StepDependencies> element. This describes the ordering
of the steps in the modelling steps section (see section 6.2.3), but in this case it is redundant as we 15

only have one step in this example.

Initial Values

The code snippet in listing

<ct:VariableAssignment>
<ct:SymbRef blkIdRef="c1" symbIdRef="pop_W"/>
<ct:Assign>

<ct:Real>70.07</ct:Real>
</ct:Assign>

</ct:VariableAssignment>
<ct:VariableAssignment>

<ct:Description>This is the: c1.omega_W = 1409/100</ct:Description>
<ct:SymbRef blkIdRef="c1" symbIdRef="omega_W"/>
<ct:Assign>

<math:Equation>
<math:Binop op="divide">

<ct:Real>1409</ct:Real>
<ct:Real>100</ct:Real>

</math:Binop>
</math:Equation>

</ct:Assign>
</ct:VariableAssignment>
<ct:VariableAssignment>

<ct:SymbRef blkIdRef="p1" symbIdRef="pop_ka"/>
<ct:Assign>

<ct:Real>1</ct:Real>
</ct:Assign>

</ct:VariableAssignment>
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shows how we set initial values. Very simply we refer to a previously defined variable, here the
typical value for a covariate pop_W , or parameter and then assign it a numerical value within the
<VariableAssignment> element. In this example the value for omegaW is calculated from a
mathematical expression, which is allowed, if this expression resolves to a numerical value. The order
of the <VariableAssignment> elements is not significant and the ordering is based on variable 5

dependencies (as described in section 12.3 on page 234).

Observations

Typically, what drives a simulation task are its outputs. You only need to simulate the parts of your
system that produce the required outputs and for as long as you wish to observe those outputs. In
PharmML we use the <Observations> element to do this job, as you can see in this listing 10

<Observations>
<Timepoints>

<ct:Vector>
<ct:Real>0.5</ct:Real>
<ct:Sequence>

<ct:Begin><ct:Int>4</ct:Int></ct:Begin>
<ct:StepSize><ct:Int>4</ct:Int></ct:StepSize>
<ct:End><ct:Int>48</ct:Int></ct:End>

</ct:Sequence>
<!-- SNIP -->
<ct:Sequence>

<ct:Begin><ct:Int>192</ct:Int></ct:Begin>
<ct:StepSize><ct:Int>4</ct:Int></ct:StepSize>
<ct:End><ct:Int>250</ct:Int></ct:End>

</ct:Sequence>
</ct:Vector>

</Timepoints>
<Continuous>

<ct:SymbRef blkIdRef="main" symbIdRef="Cc"/>
<ct:SymbRef blkIdRef="o1" symbIdRef="Cc"/>

</Continuous>
</Observations>

In this example we define a set of time points, 0.5, 4 : 4 : 48, 52 : 24 : 192, 192 : 4 : 250, and the
variables we would like to see simulated at those points in time. You can define one or more output
variables here using the <Continuous> element. It is noteworthy here that by choosing the Cc
defined in both the structural model (“main”) and observation model (“o1”) blocks we can show the
output of the structural model with and without the residual error applied. 15

7.3 Example 2: Simulation with steady state dosing

7.3.1 Description
The following example is taken from [Bonate, 2011], p.535, and represents another simple example
for a PK simulation. However, here we discuss a system under steady state resulting from a twice daily
dosing in 50 adult subjects who received a dose of 100 mg per administration. The drug concentration 20

follows a 1-comp model with first order absorption with a proportional residual error model. The only
essential new aspect compared to the previous example is the fact that we have here so called steady-
state administration. For this to be defined one needs to provide the time point of the last dosing event
and the dose interval.
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Figure 7.6: Simulated PK model as defined in the example for 10 subjects.

Variability model

The variability structure is identical to that in the previous example – there is only one level of subject
related variability, see Figure 7.4.

Parameter model

The model uses the following parameters: 5

θ1,i = popθ1 + ηθ1,i

log(Vi) = log(popV ) + ηV,i

θ2 = 0.75

CLi = θ1,i

(Wi

70

)θ2
Ka = 0.5

where

ηθ1,i ∼ N(0, ωθ1), ηV,i ∼ N(0, ωV )

and with

popθ1 = 25, ωθ1 = 5 popV = 250, ωV = 100.

Covariate model

Body weight is the only covariate used in this model. It is used in the model for the individual
clearance only.

Structural model

k =
CL

V

CSS(t) =
D

V

Ka

Ka − k

(
e−k(t−tD)

1− e−kτ
− e−Ka(t−tD)

1− e−Kaτ

)
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Weight

Type Continues
Transformation (W/70)θ2

Distribution Normal
Mean, popW 80
Standard deviation, ωW 9.6

Table 7.1: Covariates overview.

Observation model

We apply a residual error models to the output variable CSS .

Output Variable CSS

Observations Name Concentration
Units mg/l
Observations Type Continuous
Residual Error Model Proportional
Error Model Parameters b = 0.1

Trial design

Table below summarises the information about the design in this example. 5

Arm 1

Number of subjects 50
Dose variable D
Dosing Amount 100
Dose Units mg
Dose per kg no
Dosing times (h) 0
Dose intervals (h) 12

Simulation Step

The concentration CSS is going to be read out at equidistant time points after the dosing:

Output Variable CSS
Observation times 0,1,2,3,4,5,6,7,8,9,10,11,12

7.3.2 Structural model 10

In the last example we defined the structural model by using an ODE system. Here, we implement an
algebraic formula for the calculation of the drug concentration in steady-state, CSS , as shown in the
following listing

<ct:Variable symbolType="real" symbId="Css">
<ct:Assign>

<Equation xmlns="http://www.pharmml.org/2013/03/Maths">
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<Binop op="times">
<Binop op="divide">

<ct:SymbRef symbIdRef="D"/>
<ct:SymbRef blkIdRef="pm1" symbIdRef="V"/>

</Binop>
<Binop op="times">

<Binop op="divide">
<ct:SymbRef blkIdRef="pm1" symbIdRef="Ka"/>
<Binop op="minus">

<ct:SymbRef blkIdRef="pm1" symbIdRef="Ka"/>
<ct:SymbRef symbIdRef="k"/>

</Binop>
</Binop>
<Binop op="minus">

<Binop op="divide">
<Uniop op="exp">

<Binop op="times">
<Uniop op="minus">

<ct:SymbRef symbIdRef="k"/>
</Uniop>
<Binop op="minus">

<ct:SymbRef symbIdRef="t"/>
<ct:SymbRef symbIdRef="tD"/>

</Binop>
</Binop>

</Uniop>
<Binop op="minus">

<ct:Real>1</ct:Real>
<Uniop op="exp">

<Binop op="times">
<Uniop op="minus">

<ct:SymbRef symbIdRef="k"/>
</Uniop>
<ct:SymbRef blkIdRef="pm1" symbIdRef="tau"/>

</Binop>
</Uniop>

</Binop>
</Binop>
<Binop op="divide">

<Uniop op="exp">
<Binop op="times">

<Uniop op="minus">
<ct:SymbRef blkIdRef="pm1" symbIdRef="Ka"/>

</Uniop>
<Binop op="minus">

<ct:SymbRef symbIdRef="t"/>
<ct:SymbRef symbIdRef="tD"/>

</Binop>
</Binop>

</Uniop>
<Binop op="minus">

<ct:Real>1</ct:Real>
<Uniop op="exp">

<Binop op="times">
<Uniop op="minus">

<ct:SymbRef blkIdRef="pm1" symbIdRef="Ka"/>
</Uniop>
<ct:SymbRef blkIdRef="pm1" symbIdRef="tau"/>

</Binop>
</Uniop>

</Binop>
</Binop>

</Binop>
</Binop>

</Binop>
</Equation>

</ct:Assign>
</ct:Variable>
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Consequently, we use for CSS the <Variable>, instead of <DerivativeVariable>, element
as in the previous example which is of real type.

7.3.3 Trial design model
Structure

Figure 7.7 shows the Structure of this simple example consisting of 1 arm and one epoch, meaning 5

one treatment type for everybody.

Figure 7.7: Design overview: this study consists of one arm and one epoch.

Segment Activity Treatment DoseTime DoseSize Target Variable
TA bolusOR OR bolus 0 100 D

Table 7.2: Segment/activity overview.

Epoch Start time End time
Treatment Epoch 0 12

Table 7.3: Epoch definition – there is only one epoch here.

While the implementation of epoch, arm, cell and segment is analog to that in the previous ex-
ample, the <Activity> element contains new items. After we defined <DoseAmount> as before
as well, the steady-state administration is easily implemented using the <SteadyState> with last
doing event as <EndTime> and the dose interval as <Interval> as can be seen in the following 10

listing

<Activity oid="bolusOR">
<Bolus>

<DoseAmount inputType="dose">
<ct:SymbRef blkIdRef="sm1" symbIdRef="D"/>
<ct:Assign>

<ct:Real>100</ct:Real>
</ct:Assign>

</DoseAmount>
<SteadyState>

<EndTime>
<ct:SymbRef blkIdRef="sm1" symbIdRef="tD"/>
<ct:Assign>

<ct:Real>0</ct:Real>
</ct:Assign>

</EndTime>
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<Interval>
<ct:SymbRef blkIdRef="pm1" symbIdRef="tau"/>
<ct:Assign>

<ct:Real>12</ct:Real>
</ct:Assign>

</Interval>
</SteadyState>

</Bolus>
</Activity>

7.4 Example 3: Estimation, Warfarin PK

7.4.1 Description
This model describes the PK of the drug Warfarin and corresponds to the DDMoRe WP3 use case
Warfarin_PK_PRED4.

Structural model 5

The model is a one compartment model with first-order absorption with lag time and first-order elim-
ination.

D Dosing variable.

tD Time of the dose.

C Concentration of drug in the compartment. 10

k =
CL

V

C(t) =

{
0 if t− tD < Tlag

D
V

ka
ka−k

[
e−k (t−tD−Tlag) − e−ka (t−tD−Tlag)

]
otherwise

Covariate model

Body weight, W , is the only continue covariate used in this model. It is used in the model for the
individual clearance and volume.

Weight

Type Continues
Transformation log(W/70)

Table 7.4: Covariates overview.

4Available via Interface Europe: https://cp1.interfaceurope.eu/LotusQuickr/ddmore/
PageLibraryC125786900388659.nsf/h_Toc/92be13faec1b58390525670800167238/
?OpenDocument#{type=0&unid=5801C48FC6C39BB141257B2A007D6F31}
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Parameters

PK Parameters The following PK parameters are used in the model:

Tlag The lag time.

ka The absorption rate constant.

V The volume of distribution. 5

CL Clearance of elimination.

The parameters are defined as follows:

log(Tlag) = log(pop_Tlag) + ηTlag

log(ka) = log(pop_ka) + ηka

log(V ) = log(pop_V ) + β1,V log(Wi/70) + ηV

log(CL) = log(pop_CL) + β1,CL log(Wi/70) + ηCL

where

ηTlag
∼ N (0, ωTlag

), ηka ∼ N (0, ωka),

ηV ∼ N (0, ωV ), ηCL ∼ N (0, ωCL)

Note please that, in this case, β1,V = 0.75 and β1,CL = 1, i.e. are fixed and will not be estimated.

Variance-covariance matrix The full variance-covariance matrix for the random effects is :

Ω =


ω2
T lag 0 0 0

ω2
ka 0 0

ω2
V 0

ω2
CL


Observation model

We apply a residual error models to the output variable C .

Output Variable C

Observations Name Concentration
Units mg/l
Observations Type Continuous
Residual Error Model Combined2
Error Model Parameters a = 0.1, b = 0.1

10
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Trial Design

The dosing regimen for the trial is given below — there is only one for each arm. Note that all dosing
is bolus dosing (discrete administration at specific times) and all doses are administered to the same
compartment.

Arm 1

Number of subjects 33
Dose variable D
Dosing Amount 100
Dose Units mg
Dose per kg no
Dosing times (h) 0

5

Modelling Steps

The observations for the output variable is shown below. These time-points correspond to those define
in the data-file. The task to be performed is a parameter estimation which will involved the following
steps:

• Estimation of population paramaters. 10

• Estimation of Fisher information matrix.

• Estimation of the individual parameters.

Output Variable C
Observation times 0.5,1,2,3,6,9,24,36,48,72,96,120

Figure 7.8: Design overview: this study consists of one arm and one epoch.

Figure 7.8 shows the Structure of this simple example consisting of 1 arm and one epoch, meaning
one treatment type for everybody. 15

7.4.2 Overview
This our first estimation case. From figure 7.1 it follows that we can expect significant differences in
the Trial Design and Modelling Steps sections compared to the previous simulation case.

Accordingly, the Model Definition is very similar to that in the previous example. The main
PharmML feature we have not seen previously is the algebraic structural model (i.e., the model is 20

not defined as a system of ODEs). The XML is too long to show here and is similar to the examples
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shown previously (section 6.7). If you are interested then please consult the full example associated
with this specification.

We will start with the description of the Trail design. Note that because every subject receives the
same dosing regimen, this can be encoded in the <Activity> block. Otherwise we would have to
define the individual dosing regimens in the <IndividualDosing> element, see section 7.6.2 in 5

example 7.6 how this is done.

7.4.3 Trial Design
Structure

As explained in the chapter 5 on trial design, we base the following structure on the CDISC stan-
dard Study Design Model [CDISC SDM-XML Technical Committee, 2011]. The design elements 10

are contained in the <Structure> block and you can see in following listing

<Structure>
<Epoch oid="epoch1">

<Start><ct:Real>0</ct:Real></Start>
<End><ct:Real>180</ct:Real></End>
<Order>1</Order>

</Epoch>
<Arm oid="arm1"/>
<Cell oid="cell1">

<EpochRef oidRef="epoch1"/>
<ArmRef oidRef="arm1"/>
<SegmentRef oidRef="segment1"/>

</Cell>
<Segment oid="segment1">

<ActivityRef oidRef="d1"/>
</Segment>
<Activity oid="d1">

<Bolus>
<DoseAmount inputType="dose">

<ct:SymbRef blkIdRef="sm1" symbIdRef="D"/>
<ct:Assign>

<ct:Real>100</ct:Real>
</ct:Assign>

</DoseAmount>
<DosingTimes>

<ct:SymbRef blkIdRef="sm1" symbIdRef="tD"/>
<ct:Assign>

<ct:Real>0</ct:Real>
</ct:Assign>

</DosingTimes>
</Bolus>

</Activity>
</Structure>

how the study is constructed of a single epoch, with a single arm and a single cell that contains a
single segment. Note, though that this structure is not hierarchical and the <Cell> element joins the
arm, epoch and segments together.

The last section of the structure, the <Activity> element, is of interest for the discussion. This 15

is because, as already mentioned above, the administration and dosing regimen is identical for every
patient. The dose amount is D = 100 mg and the dose time is tD = 0. As in the previous example,
the structural model is defined using an algebraic function with the dosing variable D which means
the <DoseAmount> element has the attribute inputType="dose". Additionally the dosing time
variable tD is referenced here and initialised. 20
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Population

This is the place where we describe the individuals in the study, which Arm they belong to and any
possible individual characteristics, such as body weight, age and other covariates. In this example we
only know the body weight of the subjects. We define the known attributes of all individuals using the
<IndividualTemplate> and then map each individual to this template using a <Dataset>. In 5

the following listing

<Population>
<IndividualTemplate>

<IndividualMapping>
<ds:ColumnRef columnIdRef="ID"/>

</IndividualMapping>
<ArmMapping>

<ds:ColumnRef columnIdRef="ARM"/>
</ArmMapping>
<CovariateMapping>

<ds:ColumnRef columnIdRef="WEIGHT"/>
<ct:SymbRef blkIdRef="cm1" symbIdRef="W"/>

</CovariateMapping>
</IndividualTemplate>
<ds:DataSet>

<ds:Definition>
<ds:Column columnId="ID" valueType="string" columnNum="1"/>
<ds:Column columnId="ARM" valueType="string" columnNum="2"/>
<ds:Column columnId="WEIGHT" valueType="real" columnNum="3"/>

</ds:Definition>
<ds:Table>

<ds:Row><ct:String>i1</ct:String><ct:String>a1</ct:String>
<ct:Real>70.1</ct:Real></ds:Row>

<ds:Row><ct:String>i2</ct:String><ct:String>a1</ct:String>
<ct:Real>60.0</ct:Real></ds:Row>

<ds:Row><ct:String>i3</ct:String><ct:String>a1</ct:String>
<ct:Real>93.2</ct:Real></ds:Row>

<ds:Row><ct:String>i4</ct:String><ct:String>a1</ct:String>
<ct:Real>85.7</ct:Real></ds:Row>

<ds:Row><ct:String>i5</ct:String><ct:String>a1</ct:String>
<ct:Real>78.3</ct:Real></ds:Row>

<!-- SNIP -->
<ds:Row><ct:String>i33</ct:String><ct:String>a1</ct:String>

<ct:Real>94.1</ct:Real></ds:Row>
</ds:Table>

</ds:DataSet>
</Population>

you can see how this is implemented in PharmML. Column 2 in the table is equal for every subject
because they all belong to one arm, here denoted as a1 .

7.4.4 Modelling Steps
Objective data 10

The biggest advantage of the current specification is that we do not have to define the design in the
data file. After the structure of the trial is defined as above we just need to encode the measured
experimental data, here the time and the independent variable, the concentration values. To achieve
that we define a table in <Dataset> with columns: ID , time and dv and populate it with given
experimental values, see <ObjectiveDataSet> block in the following listing 15

<ObjectiveDataSet>
<IndividualMapping>

<ds:ColumnRef columnIdRef="ID"/>
</IndividualMapping>
<VariableMapping>

<ds:ColumnRef columnIdRef="time"/>
<ct:SymbRef symbIdRef="t"/>

82



7.4. Example 3: Estimation, Warfarin PK

</VariableMapping>
<VariableMapping>

<ds:ColumnRef columnIdRef="dv"/>
<ct:SymbRef blkIdRef="om1" symbIdRef="C"/>

</VariableMapping>
<ds:DataSet>

<ds:Definition>
<ds:Column columnId="ID" valueType="string" columnNum="1"/>
<ds:Column columnId="time" valueType="real" columnNum="2"/>
<ds:Column columnId="dv" valueType="real" columnNum="3"/>

</ds:Definition>
<ds:Table>

<!-- SUBJECT 1 -->
<ds:Row><ct:String>i1</ct:String><ct:Real>0.5</ct:Real><ct:Real>0</ct:Real></ds:Row>
<ds:Row><ct:String>i1</ct:String><ct:Real>1</ct:Real><ct:Real>1.9</ct:Real></ds:Row>
<ds:Row><ct:String>i1</ct:String><ct:Real>2</ct:Real><ct:Real>3.3</ct:Real></ds:Row>
<ds:Row><ct:String>i1</ct:String><ct:Real>3</ct:Real><ct:Real>6.6</ct:Real></ds:Row>
<ds:Row><ct:String>i1</ct:String><ct:Real>6</ct:Real><ct:Real>9.1</ct:Real></ds:Row>
<ds:Row><ct:String>i1</ct:String><ct:Real>9</ct:Real><ct:Real>10.8</ct:Real></ds:Row>
<!-- SUBJECT 2 -->
<!-- SNIP -->

</ds:Table>
</ds:DataSet>

</ObjectiveDataSet>

Before that we have to make sure that these values are correctly mapped to variable used in the model
which is implemented in the <VariableMapping> element. Accordingly, we define the identifier
ID and define the variable mapping. Here the time as in the data is mapped to model time t and the
measured concentration is mapped to the variable C as in the observation model.

Parameter estimation 5

In a parameter estimation you do not necessarily want to estimate all the parameters in your model
or you may wish to define bounds within which your parameter should be estimated, or provide an
initial estimate. The <ParametersToEstimate> element controls this. As you can see in the
following listing

<ParametersToEstimate>
<ParameterEstimation>

<ct:SymbRef blkIdRef="pm1" symbIdRef="pop_V"/>
<InitialEstimate fixed="false">

<ct:Real>10</ct:Real>
</InitialEstimate>

</ParameterEstimation>
<ParameterEstimation>

<ct:SymbRef blkIdRef="pm1" symbIdRef="omega_V"/>
<InitialEstimate fixed="false">

<ct:Real>1</ct:Real>
</InitialEstimate>

</ParameterEstimation>

we use a <ParameterEstimation> element that refers to the parameter in the model definition. 10

In its simplest form you can decide whether the parameter is to be estimated by setting the fixed
attribute (false indicates the parameter should be estimated). If a parameter is not defined here, then it
is assumed that it will not be estimated, in which case it would be assigned an initial value elsewhere
in the PharmML document. One of the validation rules (see chapter 12) is that every parameter has
to be initialised. 15

Step dependencies

Then at the end of the <ModellingSteps> block is the <StepDependencies> element. This
describes the ordering of the steps in the modelling process, but in this case it is almost trivial as we
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only have one step in this example:

<mstep:StepDependencies>
<mstep:Step>

<ct:OidRef oidRef="estimStep1"></ct:OidRef>
</mstep:Step>

</mstep:StepDependencies>

7.5 Example 4: Estimation with IOV

7.5.1 Description
In this example we will look at more complex trial design and a correspondingly complex variabil-
ity model. The model also includes categorical covariates, which is again something we have not 5

encountered thus far. The example is based on example IOV1 from Monolix 4.1 (see [Lixoft, 2012]
for a detailed description) and features a cross-over design and inter-occasion variability (see section
4.5). As before we will go through the key elements of the model before we look at the PharmML
examples, but given the complex nature of the trial design we will describe that first then move onto
the model definition. 10

W

W

Treatment 

Epoch

Washout 

Epoch

Arm1

Arm2

Epoch

Arm
Activity/!

Treatment
Segment Cell

Treatment 

Epoch

Occasion1

Occasion1 Occasion2

Treatment A Treatment B

Treatment ATreatment B

Occasion2

Figure 7.9: Schematic representation of a crossover design with washout. The reader is referred to
Figure 5.2 for the colour code used to identify the elements of a trial. See tables 7.7 and 7.8 for the
detailed definition of segments, cells, arms, epochs and occasions in this example.

Trial Design

The model features a basic crossover design (see Figure 7.9) with washout period and inter-occasion
variability (IOV). There are two treatments and the subjects are organised into two arms that start with
a different treatment. In between each treatment there is a washout period during which time the drug
is eliminated from each subject. In the model the treatments, fi treated as occasions, provide a second 15

level of variability – IOV (see section 4.5). This is summarised in Figure 7.10 (see also the listing in
section 7.5.3, showing relevant code within the element <VariabilityModel>).
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Arm 1 2

Number of subjects 33 33
Dose variable D D
Dosing Amount 100 150
Dose Units mg mg
Dose per kg no no
Dosing times (h) [0 : 12 : 72] [0 : 12 : 72

Table 7.5: Arms overview with dosing specification.

The model also uses covariates to model the variability within the model and so the treatments,
the sequence of treatments (i.e. treatments A, B or B,A) and the occasion itself are described in the
covariate section below.

Figure 7.10: Two levels of variability – inter-individual and inter-occasion within individual variabil-
ity.

Covariate Model

As discussed about all but the ‘Sex’ covariate is used to capture the variability in the model, see Table 5

7.6.

Parameter Model

The parameter model includes random effects that represent the IIV and IOV levels of variability. It
also relates the parameters to the covariates described above5

5To improve clarity we have colour coded the contributions of the different levels of variability and the different
covariates.
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Sex Treat TreatSeq Occasion

Type Categorical Categorical Categorical Categorical
Category Count 2 2 2 2
Categories F, M A, B A–B,B–A 1, 2
Reference F A A–B 1

Table 7.6: Covariates overview.

log(kai) = log(kapop) + βka,TreatSeq1TreatSeqi=A−B + ηka,i (7.8)

log(Vik) = log(Vpop) + βV 1Si=F + βV,OCC1OCCik=1

+ βV,Treat1Treatik=A + βV,TreatSeq1TreatSeqi=A−B

+ η
(0)
V,i + η

(−1)
V,ik

(7.9)

log(CLik) = log(CLpop) + βCL1Si=F + βCL,OCC1OCCik=1

+ η
(0)
CL,i + η

(−1)
Cl,ik

where

η
(0)
ka,i ∼ N (0, ωka), η

(0)
V,i ∼ N (0, ωV ), η

(0)
CL,i ∼ N (0, ωCL),

η
(−1)
V,ik ∼ N (0, γV ), η

(−1)
CL,ik ∼ N (0, γCL)

The full variance-covariance matrix for our model is :

Ω(0) =

ω2
ka 0 0

ω2
V 0

ω2
CL

 (7.10)

Ω(−1) =

0 0 0
γ2V 0

γ2CL

 (7.11)

Structural model

The model is first order absorption with linear elimination, with multiple dosing. This is the equivalent
to oral1_1cpt_kaVCl (model 8) from [Bertrand and Mentré, 2008, Appendix I].

Observation model

We apply a residual error models to the output variable C . 5

Output Variable C

Observations Name Concentration
Units mg/l
Observations Type Continuous
Residual Error Model Combined
Error Model Parameters a = 0.1, b = 0.1
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Modelling Steps

Compared to the last example, we have define here two tasks:

• Estimation of population paramaters.

• Estimation of the individual parameters.

7.5.2 Trial Design 5

We have summaries the dosing regimen and organisation of the trial design below, see also Figure
7.9.

Segment Activity Treatment DoseTime DoseSize Target Variable
TA OR1 OR bolus 0 : 12 : 72 150 Ac
TA OR2 OR bolus 0 : 24 : 72 100 Ac

Table 7.7: Segment/activity overview.

Epoch Occasion Start time End time
Treatment Epoch OCC1 0 180

Washout – 0 10
Treatment Epoch OCC2 0 180

Table 7.8: Epoch and occasion definition.

Structure

The implementation of the treatments, in PharmML we use the <Activity> element, is different
compared to the previous example. See Table 7.7 for the details. The difference is that now we have 10

one dose administered at multiple dosing time points instead of single time point. See the following
listing

<Activity oid="d1">
<Bolus>

<DoseAmount inputType="dose">
<ct:SymbRef blkIdRef="main" symbIdRef="D"/>
<ct:Assign>

<ct:Real>150</ct:Real>
</ct:Assign>

</DoseAmount>
<DosingTimes>

<ct:SymbRef blkIdRef="main" symbIdRef="tD"/>
<ct:Assign>

<ct:Sequence>
<ct:Begin><ct:Real>0</ct:Real></ct:Begin>
<ct:StepSize><ct:Real>12</ct:Real></ct:StepSize>
<ct:End><ct:Real>72</ct:Real></ct:End>

</ct:Sequence>
</ct:Assign>

</DosingTimes>
</Bolus>

</Activity>
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how one can describe it within the <DosingTimes> element using the <Sequence> structure
defining the start/end times and step size.

Table 7.8 gives an overview of the Epochs and Occasions in this example. Here, the occasions
overlap with the epochs, the start and end times are identical, this is not always the case, the occasions
can span one or more epochs. The Washout epoch is given here with start/end times as well which 5

is in fact a redundant piece of information (but required by construction of an Epoch) as a Washout
always assumes total reset of all drug amounts.

As discussed in the section 5.2.1, in <Structure> block we encode the variability which is
located below the subject (see the hierarchy of the random variability discussed in section 4.5). We
call it the inter-occasion variability, IOV. The following listing 10

<ObservationsEvent oid="occasions">
<ArmRef oidRef="a1"/>
<ArmRef oidRef="a2"/>
<ct:VariabilityReference>

<ct:SymbRef blkIdRef="model" symbIdRef="iov"/>
</ct:VariabilityReference>
<ObservationGroup oid="occ1">

<EpochRef oidRef="ep1"/>
</ObservationGroup>
<ObservationGroup oid="occ2">

<EpochRef oidRef="ep3"/>
</ObservationGroup>

</ObservationsEvent>
</Structure>

shows how this is done. In this case the occasions coincide with the epochs so we use the <EpochRef>
element. Alternatively, we could use the <Period> element to define explicitly the start and end
times of the occasions as shown in this listing:

<ObservationsEvent oid="occasions2">
<ArmRef oidRef="a1"/>
<ArmRef oidRef="a2"/>
<ct:VariabilityReference>

<ct:SymbRef blkIdRef="model" symbIdRef="iov"/>
</ct:VariabilityReference>
<ObservationGroup oid="occ1">

<Period>
<Start><ct:Real>0</ct:Real></Start>
<End><ct:Real>180</ct:Real></End>

</Period>
</ObservationGroup>
<ObservationGroup oid="occ2">

<Period>
<Start><ct:Real>0</ct:Real></Start>
<End><ct:Real>180</ct:Real></End>

</Period>
</ObservationGroup>

This is of course very useful if the occasions do not coincide with the epochs, or there are two or more
occasions within one epoch. In this case we set the Start and End times to 0 and 180, respectively. 15

These are exactly the same time points as are used in the epoch definition (see the first listing in
section 7.4.3 for how to encode epochs in the <Structure> definition).

Population

We pick up where we left off in the <Structure>, implementing the hooks to the variability struc-
ture. The aspect we have not covered yet is related to IIV. The <Population> element is the place 20

to define any subject related variability and those levels above it. The following listing shows how
this works
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<Population>
<ct:VariabilityReference>

<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>
</ct:VariabilityReference>

Here we deal only with the IIV so we are done with this aspect.
The next part of the <Population> block was discussed previously, with one exception. Beside

the standard assignment of subjects to an Arm and providing information regarding Sex , we need to
encode the information about Treat , i.e. treatment type considered here as covariate, which varies
by definition in this cross-over design as the study progress from Epoch1 to Epoch3 . To encode this 5

we use the nested table concept as described in section 6.6. Here the child table is defined by using
a <Table> element instead of the usual <Column> element and given the identifier ’treat-tab’.
Within the nested table definition another set of relevant columns is specified, epoch and treat . Next
these nested tables are populated with data as can be seen in the following listing

<IndividualTemplate>
<IndividualMapping>

<ds:ColumnRef columnIdRef="id"/>
</IndividualMapping>
<ArmMapping>

<ds:ColumnRef columnIdRef="arm"/>
</ArmMapping>
<CovariateMapping>

<ds:ColumnRef columnIdRef="sex"/>
<ct:SymbRef blkIdRef="c1" symbIdRef="Sex"/>

</CovariateMapping>
<IVDependentMapping>

<ds:ColumnRef columnIdRef="treat-tab"/>
<EpochMapping>

<ds:ColumnRef columnIdRef="epoch"/>
</EpochMapping>
<CovariateMapping>

<ds:ColumnRef columnIdRef="treat"></ds:ColumnRef>
<ct:SymbRef blkIdRef="c1" symbIdRef="Treat"/>

</CovariateMapping>
</IVDependentMapping>

</IndividualTemplate>
<ds:DataSet>

<ds:Definition>
<ds:Column columnId="id" valueType="id" columnNum="1"/>
<ds:Column columnId="arm" valueType="id" columnNum="2"/>
<ds:Column columnId="sex" valueType="id" columnNum="3"/>
<ds:Table tableId="treat-tab" columnNum="4">

<ds:Definition>
<ds:Column columnId="epoch" valueType="id" columnNum="1"/>
<ds:Column columnId="treat" valueType="id" columnNum="2"/>

</ds:Definition>
</ds:Table>

</ds:Definition>
<ds:Table>

<ds:Row>
<ct:Id>i1</ct:Id>
<ct:Id>a1</ct:Id>
<ct:Id>M</ct:Id>
<ds:Table>

<ds:Row><ct:Id>ep1</ct:Id><ct:Id>A</ct:Id></ds:Row>
<ds:Row><ct:Id>ep3</ct:Id><ct:Id>B</ct:Id></ds:Row>

</ds:Table>
</ds:Row>
<!-- SNIP -->

here for Arm1 . Listing 10

<!-- SNIP -->
<ds:Row>

<ct:Id>i6</ct:Id>
<ct:Id>a2</ct:Id>
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<ct:Id>M</ct:Id>
<ds:Table>

<ds:Row><ct:Id>ep1</ct:Id><ct:Id>B</ct:Id></ds:Row>
<ds:Row><ct:Id>ep3</ct:Id><ct:Id>A</ct:Id></ds:Row>

</ds:Table>
</ds:Row>
<!-- SNIP -->

shows one data record for Arm2 .

7.5.3 Variability Model
In this example the variability model is more complex than before, with IIV and IOV levels of vari-
ability, see Figure 7.10. As you will see, in PharmML the complexity comes later – in the parameter
model. At this point in the PharmML document all we need to do is define the variability levels to be 5

used in the rest of the document. You can see in the following listing
<VariabilityModel blkId="model" type="model">

<Level symbId="indiv"/>
<Level symbId="iov1">

<ParentLevel>
<ct:SymbRef symbIdRef="indiv"/>

</ParentLevel>
</Level>

</VariabilityModel>

that this is done simply by listing the variability levels using the <VariabilityLevel> element.
There are three important points to note here:

1. There is parent-child relationship between the levels of variability. The Subject level, in the
PharmML it is referenced with the attribute symbId="indiv" is higher in the hierarchy and 10

directly above the Occasion level, referenced with the attribute symbId="iov1" which is
exactly what is done using the <ParentLevel> in the listing above.

2. The name given to a level, using the symbId attribute, is not significant. We used the names
iov1 and indiv to provide clarity in other parts of the example document.

3. the type of each variability level (e.g., between-subject, inter-occasion, between-centre) is not 15

defined here or in the Model Definition as a whole6.

So in this example the PharmML document tells us that there are two variability levels and that the
lowest level of variability is called “iov1”. This may seem odd, but to simulate or estimate the model
we do not need to know which level of variability is considered IIV and which IOV. We only need to
know their level relative to each other. Of course it may be desirable to know this when exchanging a 20

model, and we feel that this information can be provided by annotation of the PharmML document.

7.5.4 Covariate Model
The covariate model describes categorical covariates, listed in Table 7.6, which we have not seen in
the previous examples.

Because this is an estimation example no probabilities are provided and only the categories are 25

defined, placed in the <Categorical> element. Then the implementation of each covariate follows
the same schema, which will be explained for the gender covariate Sex . There are obviously two
categories the covariate can be associate with F or M, which are encoded using the <Category>
element followed by an optional <Name>.

See the following listing how this is done 30

6N.B., The numerical levels described in the variability model (section 4.5) are not used.
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<CovariateModel blkId="c1">
<Covariate symbId="Sex">

<Categorical>
<Category catId="F">

<ct:Name>Female</ct:Name>
</Category>
<Category catId="M">

<ct:Name>Male</ct:Name>
</Category>

</Categorical>
</Covariate>
<Covariate symbId="Treat">

<Categorical>
<Category catId="A"/>
<Category catId="B"/>

</Categorical>
</Covariate>
<Covariate symbId="TreatSeq">

<Categorical>
<Category catId="AB">

<ct:Name>A-B</ct:Name>
</Category>
<Category catId="BA">

<ct:Name>B-A</ct:Name>
</Category>

</Categorical>
</Covariate>
<Covariate symbId="Occasion">

<Categorical>
<Category catId="occ1">

<ct:Name>1</ct:Name>
</Category>
<Category catId="occ2">

<ct:Name>2</ct:Name>
</Category>

</Categorical>
</Covariate>

</CovariateModel>

7.5.5 Parameter Model
In example 1 (section 7.2) we showed you how to define an individual parameter in PharmML and
relate that to a continuous covariate. Now in this example we will show how PharmML can be used
to describe parameters that have multiple levels of variability and are related to categorical covariates.

In the following listing 5

<SimpleParameter symbId="omega_ka"/>
<SimpleParameter symbId="pop_ka"/>
<RandomVariable symbId="eta_ka">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0" definition="">

<mean><rVal>0</rVal></mean>
<stddev><var varId="omega_ka"/></stddev>

</NormalDistribution>
</RandomVariable>
<IndividualParameter symbId="ka">

<GaussianModel>
<Transformation>log</Transformation>
<LinearCovariate>

<PopulationParameter>
<ct:Assign><ct:SymbRef symbIdRef="pop_ka"></ct:SymbRef></ct:Assign>

</PopulationParameter>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="TreatSeq"/>
<FixedEffect>

<ct:SymbRef symbIdRef="beta_ka_treatseq"/>
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<Category catId="AB"/>
</FixedEffect>

</Covariate>
</LinearCovariate>
<RandomEffects>

<ct:SymbRef symbIdRef="eta_ka"/>
</RandomEffects>

</GaussianModel>
</IndividualParameter>

we show the definition of parameter ka, which corresponds to (7.8). You should be familiar with this
structure by now, but you should take note of the <Category> element within the <FixedEffect>
element. We use this to tell PharmML that this fixed effect is related to the “AB” category of the
TreatSeq covariate. This is equivalent to the expression βka,TreatSeq1TreatSeqi=A−B in (7.8). Note that
it is possible to do this more than once, for example if the covariate has more than two categories. 5

Parameter ka has only one level of variability, but this

<SimpleParameter symbId="pop_V"/>
<SimpleParameter symbId="omega_V"/>
<SimpleParameter symbId="gamma_V"/>
<SimpleParameter symbId="beta_V"/>
<SimpleParameter symbId="beta_V_occ1"/>
<SimpleParameter symbId="beta_V_Treat"/>
<SimpleParameter symbId="beta_V_TreatSet"/>
<RandomVariable symbId="eta_V">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="model" symbIdRef="indiv"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0" definition="">

<mean><rVal>0</rVal></mean>
<stddev><var varId="omega_V"/></stddev>

</NormalDistribution>
</RandomVariable>
<RandomVariable symbId="kappa_V">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="model" symbIdRef="iov1"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0" definition="">

<mean><rVal>0</rVal></mean>
<stddev><var varId="omega_ka"/></stddev>

</NormalDistribution>
</RandomVariable>

and this listing

<IndividualParameter symbId="V">
<GaussianModel>

<Transformation>log</Transformation>
<LinearCovariate>

<PopulationParameter>
<ct:Assign><ct:SymbRef symbIdRef="pop_ka"></ct:SymbRef></ct:Assign>

</PopulationParameter>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="sex"/>
<FixedEffect>

<ct:SymbRef symbIdRef="beta_V"/>
<Category catId="F"/>

</FixedEffect>
</Covariate>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="Occasion"/>
<FixedEffect>

<ct:SymbRef symbIdRef="beta_V_occ1"/>
<Category catId="occ1"/>

</FixedEffect>
</Covariate>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="Treat"/>
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<FixedEffect>
<ct:SymbRef symbIdRef="beta_V_treat"/>
<Category catId="A"/>

</FixedEffect>
</Covariate>
<Covariate>

<ct:SymbRef blkIdRef="c1" symbIdRef="TreatSeq"/>
<FixedEffect>

<ct:SymbRef symbIdRef="beta_V_treatseq"/>
<Category catId="AB"/>

</FixedEffect>
</Covariate>

</LinearCovariate>
<RandomEffects>

<ct:SymbRef symbIdRef="eta_V"/>
<ct:SymbRef symbIdRef="kappa_V"/>

</RandomEffects>
</GaussianModel>

</IndividualParameter>

show how we describe parameter V with both IIV and IOV levels of variability. Very simply we
add a <RandomVariable> for each level of variability and use the symbIdRef attribute in the
<RandomEffects> element to map the random effect to the appropriate variability model as de-
fined at the beginning of the <ModelDefinition> element. Thus eta_V and kappa_V corre-
spond to the random effects η(0)V,i and η(−1)

V,ik in (7.9). This parameter is related to all four covariates, but 5

we only show the Sex covariate. The others defined in a very similar manner as all the covariates in
this model contain just 2 categories.

We will not show parameter Cl as it does not illustrate any new concepts, nor are any of the
random effects in the model correlated. This does not mean there is no covariance matrix defined
within the PharmML document. There is. The matrices in (7.10) and (7.11) are implicitly defined 10

because all the random effects follow a normal distribution and we can deduce the diagonal of each
matrix at each level of variability from the definition of each random effect.

7.5.6 Covered in previous examples
The remaining elements of this example to be encoded in PharmML are nearly identical to those
described before, such as <EstimationStep> and <StepDependencies> within the 15

<ModellingSteps> block, and will not be discussed here.

7.6 Example 5: Estimation with individual dosing

7.6.1 Description
This example is based on [Ribba et al., 2012] and deals with a mathematical model describing the
inhibition of the tumour growth of low-grade glioma treated with chemotherapy. Although previous 20

estimation examples were complex enough to illustrate most important aspects of the current Phar-
mML specification we would like briefly to discuss this example due to its role as a use case. It also
illustrates a new feature of the language, the fact that we can encode patient specific administration
scenarios.

7.6.2 Trial design 25

We will start with the definition of <Structure>, <Population>. The next language element,
<IndividualDosing>, is, as mentioned above, new but it’s easy to understand.
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Structure

Figure 7.11 shows the design structure of this example consisting of one arm and one epoch, mean-
ing there is one treatment type ’IV’ for all patients. As explained in section 5 the design element
<Cell> comprises the essential elements specifying the information about the arm, epoch and seg-
ment/activities. <Segment> contains treatment definition, here an IV bolus administration, defined 5

in the <Activity> element. Figure 7.12 shows the general relationship of these elements (left) and
how it applies to the current example (right). See the following listing
<!-- BLOCK II: TRIAL DEFINITION -->
<TrialDesign xmlns="http://www.pharmml.org/2013/03/TrialDesign">

<!-- STRUCTURE -->
<Structure>

<Epoch oid="epoch1">
<Order>1</Order>

</Epoch>
<Arm oid="arm1"/>
<Cell oid="cell1">

<EpochRef oidRef="epoch1"/>
<ArmRef oidRef="arm1"/>
<SegmentRef oidRef="TA"/>

</Cell>
<Segment oid="TA">

<ActivityRef oidRef="bolusIV"/>
</Segment>
<Activity oid="bolusIV">

<Bolus>
<DoseAmount inputType="target">

<ct:SymbRef blkIdRef="sm1" symbIdRef="C"/>
</DoseAmount>

</Bolus>
</Activity>

</Structure>

for the PharmML implementation.

Figure 7.11: Design overview: single arm design.

Segment Activity Treatment DoseTime DoseSize Target Variable
TA bolusIV IV bolus individual 1 C

Table 7.9: Segment/activity overview.

Population

In the next step, the Population is defined, i.e. attributes of the individuals in the study. This means 10

creating an individual template with columns for an identifier, arm and repetition and then populating
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Figure 7.12: General cell hierarchy (left); The root of the trial design structure hierarchy is the ’Cell’
which can contain one ’Segment’, one ’Epoch’ and multiple ’Arms’. The ’Segment’ element can
have multiple child elements, the ’Activities’, e.g. treatments or a washout. (right) An example of
how it is applied in [Ribba et al., 2012].

the table with appropriate data. As no covariates are used here the Population description reduces to
the assignment of the subjects to the single study arm, Arm1. As a shorthand we use the repetition
method by defining the column ’rep’, as can be seen in the following listing

<!-- POPULATION -->
<Population>

<IndividualTemplate>
<IndividualMapping>

<ColumnRef xmlns="http://www.pharmml.org/2013/08/Dataset" columnIdRef="ID"/>
</IndividualMapping>
<ArmMapping>

<ColumnRef xmlns="http://www.pharmml.org/2013/08/Dataset" columnIdRef="ARM"/>
</ArmMapping>
<ReplicateMapping>

<ColumnRef xmlns="http://www.pharmml.org/2013/08/Dataset" columnIdRef="REP"/>
</ReplicateMapping>

</IndividualTemplate>
<DataSet xmlns="http://www.pharmml.org/2013/08/Dataset">

<Definition>
<Column columnId="ID" valueType="string" columnNum="1"/>
<Column columnId="ARM" valueType="string" columnNum="2"/>
<Column columnId="REP" valueType="int" columnNum="3"/>

</Definition>
<Table>

<Row>
<ct:String>i</ct:String>
<ct:String>a1</ct:String>
<ct:Int>21</ct:Int>

</Row>
</Table>

</DataSet>
</Population>

The identifiers, ID, created here are unique and will be used to the refer to specific subjects in the
subsequent <IndividualDosing> structure element described in the following section. 5

Individual Dosing

This model utilises the idea of the so called K-PK model, meaning that the rate of the drug entry is
relevant but not its absolute value. Such models often assume, as it is the case here, that the dose is
equal 1 for all subject and dosing events, see Table 7.10.

The element IndividualDosing is used to implementing all such subject specific dosing events. 10

First we have to associate the data which follow to an appropriate activity, this is done by referring to
the ’bolusIV’ which defined previously in <Structure>, as as shown in the following listing
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ID TIME DV DOSE ID TIME DV DOSE ID TIME DV DOSE

1 0 . . 1 116.23 72.04 . 20 13.4 . 1
1 3.43 45.7 . 1 121.87 90.16 . 20 17.13 42.62 .
1 5.3 48.03 . . . . . . . . . . . . . 21 0 . .
1 42.13 71.34 . . . . . . . . . . . . . 21 1.5 . 1
1 52.63 79.3 . 20 0 48.61 . 21 3.17 . 1
1 54.57 . 1 20 4 . 1 21 4.85 . 1
1 57.53 72.3 . 20 5.88 . 1 21 6.52 . 1
1 59.77 . 1 20 6.7 46.64 . 21 8.19 . 1
1 63.3 72.07 . 20 7.76 . 1 21 9.77 72.35 .
1 68.97 70.24 . 20 9.27 44.97 . 21 9.87 . 1
1 76.53 66.81 . 20 9.64 . 1 21 14.23 66.96 .
1 94.53 60.48 . 20 11.52 . 1 21 18.13 56.79 .
1 106.1 62 . 20 13.23 42.96 . 21 23.9 60.06 .

Table 7.10: Data used in [Ribba et al., 2012], an excerpt from the experimental data set in NONMEM
format. The columns are: the identifier, ID, time for measurements and dosing events, dependent
variable, DV, which stand for PSTAR – the total tumour size and the dose, DOSE. As common for
K-PD models, the dose is equal 1 for all subjects and dosing events.

<IndividualDosing>
<ActivityRef oidRef="bolusIV"/>
<IndividualRef columnIdRef="ID"/>
<DataSet xmlns="http://www.pharmml.org/2013/08/Dataset">

<Definition>
<Column columnId="ID" valueType="string" columnNum="1"/>
<Column columnId="TIME" valueType="real" columnNum="2"/>
<Column columnId="DOSE" valueType="real" columnNum="3"/>

</Definition>
<Table>

<!-- subject 1 -->
<Row><ct:String>i1</ct:String><ct:Real>54.57</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i1</ct:String><ct:Real>59.77</ct:Real><ct:Real>1</ct:Real></Row>
<!-- SNIP -->
<!-- subject 21 -->
<Row><ct:String>i21</ct:String><ct:Real>1.5</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i21</ct:String><ct:Real>3.17</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i21</ct:String><ct:Real>4.85</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i21</ct:String><ct:Real>6.52</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i21</ct:String><ct:Real>8.19</ct:Real><ct:Real>1</ct:Real></Row>
<Row><ct:String>i21</ct:String><ct:Real>9.87</ct:Real><ct:Real>1</ct:Real></Row>

</Table>
</DataSet>

</IndividualDosing>
</TrialDesign>

Next we map the subject’s identifier ID to that created in the population definition. Finally a data set
template using <Definition> element is defined, i.e. the columns ID , TIME and DOSE . Then
the table is populated with subject specific values as shown here for subjects 1, 2 and 21.
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7.6.3 Structural model definition
The following ODE system is defined:

dC

dt
= −KDE× C

dP

dt
= λP × P

(
1− P ?

K

)
+ kQPP ×QP − kPQ × P − γ × C × KDE× P

dQ

dt
= kPQ × P − γ × C ×KDE ×Q

dQP

dt
= γ × C × KDE×Q− kQPP ×QP − δQP ×QP

P ? = P +Q+QP

with initial conditions

C(t = 0) = 1; P (t = 0) = P0; Q(t = 0) = Q0; QP (t = 0) = 0.

Defining initial conditions

This example differs from the previous ones. It requires, in addition to model parameters, the estima-
tion of the initial conditions of two tumour growth related variables. Moreover, the inter-individual
variability is assumed for these variables. The value for QP (t = 0) = QP0 is fixed to 0 but the values 5

for P (t = 0) = P0 and Q(t = 0) = Q0 are allowed to vary according to a log-normal distribution,
see the following listing

<!-- P0 -->
<SimpleParameter symbId="pop_P0"/>
<SimpleParameter symbId="omega_P0"/>
<RandomVariable symbId="eta_P0">

<ct:VariabilityReference>
<ct:SymbRef blkIdRef="sm1" symbIdRef="indiv"/>

</ct:VariabilityReference>
<NormalDistribution xmlns="http://www.uncertml.org/3.0"

definition="http://www.uncertml.org/distributions/normal">
<mean><rVal>0</rVal></mean>
<stddev><var varId="omega_P0"/></stddev>

</NormalDistribution>
</RandomVariable>
<IndividualParameter symbId="P0">

<GaussianModel>
<Transformation>log</Transformation>
<LinearCovariate>

<PopulationParameter>
<ct:Assign>

<ct:SymbRef symbIdRef="pop_P0"/>
</ct:Assign>

</PopulationParameter>
</LinearCovariate>
<RandomEffects>

<ct:SymbRef symbIdRef="eta_P0"/>
</RandomEffects>

</GaussianModel>
</IndividualParameter>
<!-- QP0 -->
<SimpleParameter symbId="QP0">

<ct:Assign>
<ct:Real>0</ct:Real>

</ct:Assign>
</SimpleParameter>

where the definition of the distribution for the initial condition P0 is shown.
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7.6.4 Modelling steps
This requires the specification of the following items: EstimationStep and StepDependencies. It has
been described in previous examples in detail and will be skipped here.
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CHAPTER 8
Unresolved issues

Issue: 1 Can symbol resolution rules be simplified? Currently the rules for symbol resolution (see
section 12.3.2) define the class of symbol that can be referred to. For example in the GeneralCo- 5

variate parameter definition, we restrict any equation defined there to only reference parameters
and covariates — random variables are prohibited. This ensures that this part of the PharmML
document is used correctly, but it is it too restrictive?

Issue: 2 More work to define operations and algorithms in PharmML. There is not specification for
what estimation operations and algorithms should be supported by PharmML. Ideally algorithm 10

definitions will be supported by external resources such as KiSAO (http://biomodels.
net/kisao/), but there is no support there yet.

Issue: 3 The way we map a dataset column to an independent variable is not consistent. In the
Estimation Step we map to the independent variable symbol (t) using a <SymbRef> element
and in the Trial Design we use the <IndependentVariableMapping> element. It will 15

simplify the rules if w are consistent.

Issue: 4 Units We had planned to introduce units into this release using the mechanism adopted by
SBML. However, their approach does not enable the encoding of temperature in either Fahren-
heit or Celsius (because these conversions require the addition of a constant). SBML only alow
temperature in Kelvin as a result. Do we wish to follow their approach or try and find a different 20

solution?

Issue: 5 Interpolation When estimating from experimental data it is often necessary to use time-
points between those for which we have experimental data. Software interpolate between the
known data-points to obtain a value, but of course there is more than one way to do this. The
approach taken is tool specific, so the question is do we wish to specify what interpolation 25

method is used in the estimation step?

Issue: 6 Use of the columnNum in the dataset definition. In version 0.1.0 of PharmML the dataset
read from a tabular ascii file, such as a tab delimited file. Because of this we used the columnNum
to map the column in the data-file to that in the dataset. Now that the data is defined in XML
this use of the columnNum is not used and the columnNum had been reinterpreted to define 30

the order of the column in the dataset definition. This is superfluous and the column order could
be easily defined by the order in the XML document - as it is for the contents of the <Row>
element.
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CHAPTER 9
Purpose and Organisation

9.1 Introduction
The technical reference, as you might expect, provides the detail of the PharmML specification and 5

aims to provide a definition of the language in a form that is useful to those developing software tools
that support the language, and reviewers who wish to understand its fine details.

The reference is organised to first provide background about the design guidelines and conventions
used and then give an annotated description of the XML Schema definition (both in chapter 10). Then
an enumeration of the language’s rules is given (in chapter 12) 10

9.2 How is PharmML Defined?
The normative definition of PharmML consists of two parts. First is the XML Schema definition.
This describes the syntax of the XML document and defines some semantic rules such as constraints
on permitted attribute values (enumerations) and the uniqueness of some identifiers. In order to be
valid PharmML, an XML document must conform to this schema definition. The XML Schema 15

definition files are available with this specification and should be regarded as the definitive authority.
For convenience we provide a documented form of the schema definition in chapter 10, but if there
are any discrepancies between these, then the version in the file should be regarded as definitive.

Most of the semantic rules in PharmML are not captured by the XML Schema definition, so the
second part of the normative definition is provided by the rules in chapter 12. The rules are enumerated 20

to allow validating tools to conveniently refer to them and also to make them clear. The rules specified
here are definitive and take precedence over sources such as software implementations.
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CHAPTER 10
The XML Schema Definition

10.1 Design Guidelines
In designing the XML Schema definition of PharmML we adopted a number of design and naming 5

conventions. These were based on a number of best practise recommendations1,2 and we have tried to
be consistent in their application. Unless specifically documented a deviation from these guidelines
is an error on our part.

10.1.1 XML Schema Compliance
PharmML is defined using version 1.0 of the XML Schema3. 10

10.1.2 Naming Conventions
Obviously the XML Schema has rules about how names can be defined, but on top of these rules we
have adopted the following conventions:

• Names should, wherever possible be, be descriptive of the named component’s purpose, and
acronyms should be avoided. 15

• Names should be in English with British English spellings.

• Names should not be excessively long. Especially names used very frequently as they may
clutter the XML and unnecessarily bloat the size of the resulting XML documents.

• Element names should be capitalised and use camel case to delineate words.

• Attribute names should start with a lowercase character and use camel case to delineate words. 20

• Enumerations should follow the convention used for attributes.

10.1.3 Design Pattern
We adopted the Venetian Blind design pattern4 for PharmML. In this pattern all non-global XML
Elements are defined using a complex type. Complex types were inherited using extension rather than

1http://alturl.com/jdmkn
2http://www.xml.com/pub/a/2002/11/20/schemas.html
3http://www.w3.org/TR/xmlschema-1/
4http://www.oracle.com/technetwork/java/design-patterns-142138.html
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restriction. Typically we tried to reduce the number of global XML Elements to make identification
of the top level element easier (in cases where there was a single preferred top-level element).

The benefit of this approach is that it maximises reuse and extension of the schema by allowing
other schemas to reuse or extend the complex types. This is at the expense of cluttering the design
with a surfeit of complex type definitions. 5

10.1.4 Namespaces
The domain name pharmml.org has been reserved for use by PharmML. Consequently we use this
domain name in all the namespaces associated with PharmML.

There are a number of possible strategies for defining namespaces5 and no definitive best practise.
However, we have followed the W3C conventions6 and used the following form: 10

http://pharmml.org/Year/Month/Resource

Here the year and month define when the URL was created and the Resource provides a short, but
descriptive name of the purpose of the schema.

10.1.5 Elements
Elements should always be qualified by a namespace. This corresponds to the XML Schema declara- 15

tion: elementFormDefault="qualified".

10.1.6 Attributes
Default attributes effectively change the structure of the DOM from that described by the XML itself.
This can cause problems with validation and result in difficult to track errors7. For these reasons the
use of default attribute values is forbidden. 20

Attributes should never be qualified by a namespace8. This corresponds to the XML Schema
declaration attributeFormDefault="unqualified".

10.1.7 Elements vs. Attributes
It is a common dilema in design XML documents: when do I use an element and when an attribute?
In this schema design we have tried to follow the advice provided in an IBM technical document9. 25

The advice can be summarised as follows:

Principle of core content Briefly data or core content should be held in elements and metadata
should be in attributes.

Principle of structured information If the information needs to be structured then it should be rep-
resented by an element. If it is atomic then us an attribute. 30

Principle of readability If the information is intended to be read and understood by a person then
use elements. If it is intended to be used by a machine then use attributes.

5http://www.ibm.com/developerworks/library/x-namcar/index.html
6http://www.w3.org/Provider/Style/URI
7ref
8http://www.xml.com/pub/a/2002/11/20/schemas.html?page=3
9http://http://www.ibm.com/developerworks/xml/library/x-eleatt/index.html
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Principle of element/attribute binding If the information to be represented can be modified by an-
other attribute then use an element to represent it.

These rules are to some extent a matter of judgement and in some cases there are marginal cases.
The names of parameters, variables and other symbols used in PharmML are a case in point. The
names for such symbols have meaning for a modeller, but they are also used computationally. In 5

addition, variable names can have to forms, a computer friendly form such as omega_V and a math-
ematical form such as ωV . Currently PharmML only handles the latter form, and although this is a
computational name it is also commonly used by modellers. Our solution has been to treat the symbol
name as an element that can in the future be extended to handle a mathematical form of the variable,
but with the computation name given as an attribute. For example: 10

<Variable symbID="pV" symbolType="scalar" >
<ct:Symbol>pop_V</Symbol>

</Variable>

In the above case the <ct:Symbol> element is optional so it is only provided if the displayed
name of the symbol is required.

10.1.8 Keys and Key References
We use the XML Schema key and keyref mechanisms only. ID and IDREF types should not be used10.

10.1.9 Versioning Strategy 15

PharmML will change over time and indeed we have described the versioning strategy for PharmML
earlier in this document (section 1.6.1 on page 6). While this makes clear how we anticipate the spec-
ification document to change, what we also need to accommodate are changes to the XML Schema
definition that such change implies.

Unfortunately there is no definitive solution for versioning XML Schema definitions, but we are 20

following the conventions described elsewhere11. In particular we will do the following:

1. Use the version attribute in the XML Schema definition to define the current version of the
schema.

2. Add a version attribute in the top-most elements of the instance document indicating what
version they were compliant with, when they were last updated. 25

3. Rely on the PharmML validator to ensure that the version of the instance document and XML
Schema definition are compatible.

4. The namespace URL will only change if there is a significant change in the symbols defined in
the namespace or if the meaning of a significant proportion has been redefined.

10.2 XML Schema Organisation 30

PharmML is a large language and the XML Schema definition is correspondingly large too. For-
tunately, the language is naturally organised into three sections (see chapter 6): Model Definition,
Trial Design, and Modelling Steps, which provides us with a convenient way to modularise the XML

10http://www.xml.com/pub/a/2002/11/20/schemas.html?page=3#identity_constraints
11http://www.xfront.com/Versioning.pdf
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Schema definition. In addition, we have two components, which are also naturally independent of
the core PharmML specification: the definition of both mathematical expressions and probability dis-
tributions. Using these natural divisions, we split the PharmML XML Schema definition into the
following xsd files.

File Name Namespace URI Description

pharmml.xsd http://www.pharmml.org/2013/03/PharmML The overall PharmML definition that in-
cludes all the other components.

modelDefinition.xsd http://www.pharmml.org/2013/03/ModelDefinition Defines the model definition section.
trialDesign.xsd http://www.pharmml.org/2013/03/TrialDesign Defines the trial design section.
modellingSteps.xsd http://www.pharmml.org/2013/03/ModellingSteps Defines the modelling steps section.
commonTypes.xsd http://www.pharmml.org/2013/03/CommonTypes Defines the type definitions and structures

common to the above schema definitions.
dataset.xsd http://www.pharmml.org/2013/08/Dataset Defined the dataset and related structures

that is used in the trial design and mod-
elling steps to represent tabular data.

maths.xsd http://www.pharmml.org/2013/03/Maths Defines the representation of mathemati-
cal expressions.

UncertML30.xsd http://www.uncertml.org/3.0 Defines the probability distributions pro-
vided by PharmML.

5

Note that a PharmML document must be compliant with the pharmml.xsd definition, which in-
cludes all the other components. The other schema definitions should not be used independently to
validate a PharmML document.
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CHAPTER 11
Schema Description

In this chapter the detailed documentation of the XML Schemas used to define PharmML is included.
All the schemas except the UncertML schema is included. UncertML is maintained separately from 5

PharmML and for more information you should go to http://www.uncertml.org.
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1 Namespace: "http://www.pharmml.org/2013/03/PharmML"

1.1 Schema(s)

1.1.1 Main schema pharmml.xsd

Namespace http://www.pharmml.org/2013/03/PharmML

1.2 Element(s)

1.2.1 Element mml:PharmML

Namespace http://www.pharmml.org/2013/03/PharmML

Annotations The root element of the PharmML document.

Diagram

Attributes
QName Type Use
writtenVersion xs:string required

The version of PharmML that this document was compliant with when this
document was written.

1.2.2 Element mml:PharmML /mml:IndependentVariable

Namespace http://www.pharmml.org/2013/03/PharmML

Diagram

Type mml:IndependentVariableType

11.1 PharmML
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1.3 Complex Type(s)

1.3.1 Complex Type mml:IndependentVariableType

Namespace http://www.pharmml.org/2013/03/PharmML

Annotations Type used to specify the indepdent variable of the model.

Diagram

Type extension of PharmMLRootType

2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute mml:PharmML /@writtenVersion

Namespace No namespace
Annotations The version of PharmML that this document was compliant with when this document was written.
Type xs:string
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1 Namespace: "http://www.pharmml.org/2013/03/ModelDefinition"

1.1 Schema(s)

1.1.1 Main schema modelDefinition.xsd

Namespace http://www.pharmml.org/2013/03/ModelDefinition

1.2 Element(s)

1.2.1 Element mdef:VariabilityLevelDefnType /mdef:ParentLevel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Parent variability level.

Diagram

Type mdef:ParentLevelType

1.2.2 Element mdef:VariabilityDefnBlock /mdef:Level

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A variability level within the model.

Diagram

Type mdef:VariabilityLevelDefnType

1.2.3 Element mdef:CommonParameterElement

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Abstract element defining parameters used in the model.

11.2 Model Definition
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Diagram

Type mdef:CommonParameterType

Substitution
Group

• mdef:SimpleParameter

• mdef:IndividualParameter

• mdef:RandomVariable

1.2.4 Element mdef:CommonParameterModelType /mdef:Correlation

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines the correlation between the random effects.

Diagram

Type mdef:CorrelationType

1.2.5 Element mdef:CorrelationType /mdef:RandomVariable1

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The first correlated parameter.
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Diagram

Type mdef:CorrelatedRandomVarType

1.2.6 Element mdef:CorrelationType /mdef:RandomVariable2

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The second correlated parameter.

Diagram

Type mdef:CorrelatedRandomVarType

1.2.7 Element mdef:CorrelationType /mdef:CorrelationCoefficient

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The correlation co-efficient variable.

Diagram

Type ScalarRhs

1.2.8 Element mdef:CorrelationType /mdef:Covariance

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The covariance for both parameters.

Diagram

Type ScalarRhs

1.2.9 Element mdef:ObservationError

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Abstract element defining an observation error.
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Diagram

Type mdef:ObservationErrorType

Substitution
Group

• mdef:Standard

• mdef:General

1.2.10 Element mdef:GaussianObsError /mdef:Transformation

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines the transformation (u) applied to both sides of equation.

Diagram

Type mdef:LhsTransformationType

Facets
enumeration log Natural log transformation.
enumeration logit Logit transformation.
enumeration probit Probit transformation.

1.2.11 Element mdef:GaussianObsError /mdef:Output

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The output variable from the structural model.

Diagram

1.2.12 Element mdef:GaussianObsError /mdef:ErrorModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The error model (g) to apply to the residual error.

Diagram

1.2.13 Element mdef:GaussianObsError /mdef:ResidualError

Namespace http://www.pharmml.org/2013/03/ModelDefinition
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Annotations The residual error (eps).

Diagram

1.2.14 Element mdef:GeneralObsError /mdef:Transformation

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a transformation applied to the left-hand-side of the residual error equation.

Diagram

Type mdef:LhsTransformationType

Facets
enumeration log Natural log transformation.
enumeration logit Logit transformation.
enumeration probit Probit transformation.

1.2.15 Element mdef:IndividualParameterType /mdef:GaussianModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a Gaussian model, with either linear or non-linear covariates.

Diagram

1.2.16 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:Transformation

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The transformation (h) applied to both sides of the equation.

Diagram

Type mdef:LhsTransformationType

Facets
enumeration log Natural log transformation.
enumeration logit Logit transformation.
enumeration probit Probit transformation.

1.2.17 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:LinearCovariate

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines the linear covariate model: h(psi_pop) + beta c_i

Diagram
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1.2.18 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:LinearCovariate /mdef:
PopulationParameter

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The population parameter: psi_pop.

Diagram

1.2.19 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:LinearCovariate /mdef:
Covariate

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines the linear covates: beta c_i

Diagram

Type mdef:CovariateRelationType

1.2.20 Element mdef:CovariateRelationType /mdef:FixedEffect

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The fixed effect relating the parameter and covariate.

Diagram

Type mdef:FixedEffectRelationType

1.2.21 Element mdef:FixedEffectRelationType /mdef:Category

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations
Specifies the category value of the covariate that must apply when this fixed effect is to be used in the
parameter equation. This is equivalent to specifying the following: 1_cov=cat . beta.

Diagram

Type mdef:CategoricalRelationType

Attributes

QName Type Use
catId SymbolIdType required

Specifies the category value of the covariate to which this relationship applies.
For example if a covariate is sex then the Female category may be specified as
catId="F".
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1.2.22 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:GeneralCovariate

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations
A general covariate model definition. This can be used to define a non-linear covariate model. This
equates to H in the above definitions.

Diagram

1.2.23 Element mdef:IndividualParameterType /mdef:GaussianModel /mdef:RandomEffects

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The random effects (eta) used in the gaussian parameter model.

Diagram

Type mdef:ParameterRandomEffectType

1.2.24 Element mdef:CovariateDefinitionType /mdef:Continuous

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Specifies a continuous covariate.

Diagram

Type mdef:ContinuousCovariateType

1.2.25 Element mdef:ContinuousCovariateType /mdef:Transformation

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The transformation to be applied when the covariate is ued.

Diagram

Type mdef:CovariateTransformationType

1.2.26 Element mdef:CovariateDefinitionType /mdef:Categorical

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Specifies a categprical covariate.

Diagram

Type mdef:CategorialCovariateType
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1.2.27 Element mdef:CategorialCovariateType /mdef:Category

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A category of the categorical covariate.

Diagram

Type mdef:CategoryType

Attributes
QName Type Use
catId SymbolIdType required

The identifier of the category.

1.2.28 Element mdef:CategoryType /mdef:Probability

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The definition of the probability associated with this category.

Diagram

Type ScalarRhs

1.2.29 Element mdef:SimpleParameter

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a simple parameter.

Diagram

Type mdef:SimpleParameterType
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Substitution
Group
Affiliation

• mdef:CommonParameterElement

1.2.30 Element mdef:CovariateModelType /mdef:Covariate

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a covariate.

Diagram

Type mdef:CovariateDefinitionType

1.2.31 Element mdef:ModelDefinitionType /mdef:VariabilityModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A variability level.

Diagram

Type mdef:VariabilityDefnBlock

1.2.32 Element mdef:ModelDefinitionType /mdef:CovariateModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A covariate model.
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Diagram

Type mdef:CovariateModelType

1.2.33 Element mdef:ModelDefinitionType /mdef:ParameterModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A parameter model.

Diagram

Type mdef:ParameterModelType

1.2.34 Element mdef:StructuralModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a structural model.

Diagram

Type mdef:StructuralModelType
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1.2.35 Element mdef:ModelDefinitionType /mdef:ObservationModel

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations An observations model.

Diagram

Type mdef:ObservationModelType

1.2.36 Element mdef:Standard

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines standard error model.

Diagram

Type mdef:GaussianObsError
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Substitution
Group
Affiliation

• mdef:ObservationError

1.2.37 Element mdef:General

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines general error model.

Diagram

Type mdef:GeneralObsError

Substitution
Group
Affiliation

• mdef:ObservationError

1.2.38 Element mdef:IndividualParameter

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines an individual parameter.
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Diagram

Type mdef:IndividualParameterType

Substitution
Group
Affiliation

• mdef:CommonParameterElement

1.2.39 Element mdef:RandomVariable

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a random variable.

Diagram

Type mdef:ParameterRandomVariableType

Substitution
Group
Affiliation

• mdef:CommonParameterElement
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1.2.40 Element mdef:ModelDefinition

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations This is the top element defining the defintion of the pharmacometric model. This contains the variability
model, covariate model, parameter model, structural model and observations model.

Diagram

Type mdef:ModelDefinitionType

1.3 Simple Type(s)

1.3.1 Simple Type mdef:VariabilityType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations The type defining the type of variability of the variability model.

Diagram
Type restriction of xs:NCName

Facets enumeration error Residual error variability.
enumeration model Model variability.

1.3.2 Simple Type mdef:LhsTransformationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations A type defining possible transformation functions that may be applied.

Diagram
Type restriction of xs:token

Facets
enumeration log Natural log transformation.
enumeration logit Logit transformation.
enumeration probit Probit transformation.

1.4 Complex Type(s)

1.4.1 Complex Type mdef:VariabilityLevelDefnType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines the variability level.
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Diagram

Type extension of PharmMLRootType

1.4.2 Complex Type mdef:ParentLevelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Parent level type.
Diagram

1.4.3 Complex Type mdef:VariabilityDefnBlock

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defining a block defining a variability model.

Diagram

Type extension of PharmMLRootType

1.4.4 Complex Type mdef:CommonParameterModelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Abstract type defining common parameter model.

Diagram

Type extension of PharmMLRootType

1.4.5 Complex Type mdef:CommonParameterType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
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Annotations Abstract type defining the common properties of a parameter definition.

Diagram

Type extension of PharmMLRootType

1.4.6 Complex Type mdef:CorrelationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defining a correlation between random effects.

Diagram

Type extension of PharmMLRootType

1.4.7 Complex Type mdef:CorrelatedRandomVarType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defining a correlated random variable.

Diagram

Type extension of PharmMLRootType

1.4.8 Complex Type mdef:ParameterModelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations The type defining a parameter model.

Diagram

Type extension of mdef:CommonParameterModelType
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1.4.9 Complex Type mdef:ObservationModelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defining the observation model.

Diagram

Type extension of mdef:CommonParameterModelType

1.4.10 Complex Type mdef:ObservationErrorType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations Base observation error type. This defines the name of the variable assigned with the result of the residual
error.

Diagram

Type extension of PharmMLRootType

1.4.11 Complex Type mdef:GaussianObsError

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Gaussian residual error definition. Definition is of the form: y = f + g * eps
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Diagram

Type extension of mdef:ObservationErrorType

1.4.12 Complex Type mdef:GeneralObsError

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations A general form of the residual error, where the error is unstructured and explicit.

Diagram

Type extension of mdef:ObservationErrorType

1.4.13 Complex Type mdef:IndividualParameterType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations

Describes an individual parameter. Three encodings of a parameter model are available: Type 1. explicit
equation type of parameter model psi_i = H(beta, c_i, eta_i) Type 2. Gaussian model with general
covariate model h(psi_i) = H(beta, c_i) + eta_i Type 3. Gaussian model with linear covariate model
h(psi_i) = h(psi_pop) + beta c_i + eta_i
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Diagram

Type extension of mdef:CommonParameterType

1.4.14 Complex Type mdef:CovariateRelationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations Type defining the relationship between the covariate and a fixed effect parameter. Typically this defines a
linear relationships.

Diagram

1.4.15 Complex Type mdef:FixedEffectRelationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Defines a fixed effect.

Diagram

1.4.16 Complex Type mdef:CategoricalRelationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type specifying a relationship to a specific category value in a categorical covariate.

Diagram

Attributes

QName Type Use
catId SymbolIdType required

Specifies the category value of the covariate to which this relationship applies.
For example if a covariate is sex then the Female category may be specified as
catId="F".

1.4.17 Complex Type mdef:ParameterRandomEffectType
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Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defining a Random effect using a reference to a Random variable.
Diagram

1.4.18 Complex Type mdef:SimpleParameterType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations
This defines a parameter that does not contain any random effects. Once initialised its value will not
change over time. The parameter is of type real.

Diagram

Type extension of mdef:CommonParameterType

1.4.19 Complex Type mdef:ParameterRandomVariableType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations Type specifies a random variable definition.

Diagram

Type extension of mdef:CommonParameterType

1.4.20 Complex Type mdef:CovariateDefinitionType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type that specifies a covariate definition.
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Diagram

Type extension of PharmMLRootType

1.4.21 Complex Type mdef:ContinuousCovariateType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defines a continuous covariate.

Diagram

1.4.22 Complex Type mdef:CovariateTransformationType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defines how the covariate is transformed when used.
Diagram

1.4.23 Complex Type mdef:CategorialCovariateType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations Type defines a categorical covariate.

Diagram

1.4.24 Complex Type mdef:CategoryType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type defines a category in a categorical covariate.

Diagram
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Attributes
QName Type Use
catId SymbolIdType required

The identifier of the category.

1.4.25 Complex Type mdef:StructuralModelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations Type that specifies a structural model.

Diagram

Type extension of PharmMLRootType

1.4.26 Complex Type mdef:CovariateModelType

Namespace http://www.pharmml.org/2013/03/ModelDefinition

Annotations A type defining a covariate model.

Diagram

Type extension of PharmMLRootType

1.4.27 Complex Type mdef:ModelDefinitionType

Namespace http://www.pharmml.org/2013/03/ModelDefinition
Annotations Type that specifies the model definition section of the PharmML document.

Diagram
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Type extension of PharmMLRootType

2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute mdef:VariabilityDefnBlock /@type

Namespace No namespace
Annotations Defines the type of the variability model.
Type mdef:VariabilityType

Facets enumeration error Residual error variability.
enumeration model Model variability.

2.1.2 Attribute mdef:CommonParameterType /@symbId

Namespace No namespace
Annotations The symbol id for this parameter.
Type SymbolIdType

2.1.3 Attribute mdef:CategoricalRelationType /@catId

Namespace No namespace

Annotations
Specifies the category value of the covariate to which this relationship applies. For example if a covariate
is sex then the Female category may be specified as catId="F".

Type SymbolIdType

2.1.4 Attribute mdef:CategoryType /@catId

Namespace No namespace
Annotations The identifier of the category.
Type SymbolIdType
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1 Namespace: "http://www.pharmml.org/2013/03/TrialDesign"

1.1 Schema(s)

1.1.1 Main schema trialDesign.xsd

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines trial design section of PharmML.

1.2 Element(s)

1.2.1 Element design:DosingRegimen

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies dosing regimen.

Diagram

Type design:DosingRegimenType

Substitution
Group

• design:Bolus

• design:Infusion

1.2.2 Element design:Washout

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies a washout epoch, where variables are reset to their initial values.

Diagram

Type design:WashoutType

1.2.3 Element design:BolusType /design:DoseAmount

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations Dosing information.

11.3 Trial Design
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Diagram

Type design:DosingVariableType

Attributes
QName Type Use
inputType design:DoseInputTypeTyperequired

Specifies the type of dosing. Is it assigned to a variable or is it an input to a
system of ODEs.

1.2.4 Element design:BolusType /design:SteadyState

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations Steady state bolus dosing.

Diagram

Type design:SteadyStateType

1.2.5 Element design:SteadyStateType /design:EndTime

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations The last dosing time.

Diagram

Type design:SteadyStateParameterType

1.2.6 Element design:SteadyStateType /design:Interval

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations The dosing period.

Diagram

Type design:SteadyStateParameterType

1.2.7 Element design:BolusType /design:DosingTimes
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Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations The dosing times.

Diagram

Type design:DosingTimesPointsType

1.2.8 Element design:InfusionType /design:DoseAmount

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations Dosing information.

Diagram

Type extension of design:DosingVariableType

Attributes
QName Type Use
inputType design:DoseInputTypeTyperequired

Specifies the type of dosing. Is it assigned to a variable or is it an input to a
system of ODEs.

1.2.9 Element design:InfusionType /design:SteadyState

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations Steady state infusion dosing.

Diagram

Type design:SteadyStateType

1.2.10 Element design:InfusionType /design:DosingTimes

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations The dosing times.

Diagram

Type design:DosingTimesPointsType
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1.2.11 Element design:InfusionType /design:Duration

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations The duration of the infusion.

Diagram

Type design:SteadyStateParameterType

1.2.12 Element design:InfusionType /design:Rate

Namespace http://www.pharmml.org/2013/03/TrialDesign

Diagram

Type design:SteadyStateParameterType

1.2.13 Element design:StudyEventType /design:ArmRef

Namespace http://www.pharmml.org/2013/03/TrialDesign
Annotations In effect defines the population of subjects that this event happens to.

Diagram

Type OidRefType

1.2.14 Element design:ObservationsType /design:ObservationGroup

Namespace http://www.pharmml.org/2013/03/TrialDesign

Diagram

Type design:ObservationsGroupType

1.2.15 Element design:ObservationsGroupType /design:EpochRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to the epoch during which this group of observations occurred.
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Diagram

Type OidRefType

1.2.16 Element design:ObservationsGroupType /design:Period

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the time period within the study during which this group of observations occurred.

Diagram

Type design:StudyPeriodType

1.2.17 Element design:StudyPeriodType /design:Start

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations The start time of the period.

Diagram

Type design:StudyTimePointType

1.2.18 Element design:StudyPeriodType /design:End

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations The end time of the period.

Diagram

Type design:StudyTimePointType

1.2.19 Element design:Order

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the order of elements in the trial structure.

Diagram

Type IntValueType
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1.2.20 Element design:CellDefnType /design:EpochRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to the epoch in which this cell occurrs.

Diagram

Type OidRefType

1.2.21 Element design:CellDefnType /design:ArmRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to the arm in which this cell occurs.

Diagram

Type OidRefType

1.2.22 Element design:CellDefnType /design:SegmentRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to a Segment which is used in this Cell (segments can be referred to by more than one cell.

Diagram

Type OidRefType

1.2.23 Element design:SegmentDefnType /design:ActivityRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to an activity carried out in the segment of the study.

Diagram

Type OidRefType

1.2.24 Element design:TrialStructureType /design:Epoch

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines an epoch in the study.
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Diagram

Type design:EpochDefnType

1.2.25 Element design:TrialStructureType /design:Arm

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines an arm of the study.

Diagram

Type design:ArmDefnType

1.2.26 Element design:TrialStructureType /design:Cell

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines a cell in the study.

Diagram

Type design:CellDefnType
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1.2.27 Element design:TrialStructureType /design:Segment

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines a segment of the study.

Diagram

Type design:SegmentDefnType

1.2.28 Element design:Activity

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies an activity in the trial structure.

Diagram

Type design:ActivityType

1.2.29 Element design:StudyEvent

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations
An abstract element for all study events. There is only one element inheriting from this so this be
superfluous in the future.
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Diagram

Type design:StudyEventType

Substitution
Group • design:ObservationsEvent

1.2.30 Element design:TrialDesignType /design:Structure

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the structure of the study.

Diagram

Type design:TrialStructureType

1.2.31 Element design:TrialDesignType /design:Population

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the population of the study.
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Diagram

Type design:PopulationType

1.2.32 Element design:PopulationType /design:Demographic

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations
Defines a property of the individuals in the study that is not a covariate, but is important in the design of
the study.

Diagram

Type design:DemographicType

1.2.33 Element design:PopulationType /design:IndividualTemplate

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines a template of information about the subjects in the study.

Diagram

Type design:IndividualDefinitionType
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1.2.34 Element design:IndividualMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Maps the individual to the dataset.

Diagram

Type design:IndividualMappingType

1.2.35 Element design:ArmMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Maps the arm to the dataset.

Diagram

Type design:ArmMappingType

1.2.36 Element design:AttributeMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Maps attributes to the dataset.

Diagram

Substitution
Group

• design:CovariateMapping

• design:DemographicMapping

1.2.37 Element design:IndividualDefinitionType /design:IVDependentMapping
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Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the indepedent (usually time) variable dependent mapping to the dataset.

Diagram

Type design:IndependentVariableDependentMappingType

1.2.38 Element design:IndependentVariableDependentMappingType /design:IndependentVariable
Mapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Maps the independent variable (most often time) to a column in the dataset.

Diagram

Type design:IndependentVariableMappingType

1.2.39 Element design:IndependentVariableDependentMappingType /design:EpochMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations
Maps the epoch to a column in the dataset. The epoch defines the time period in which this property
applies.

Diagram

Type design:EpochMappingType

1.2.40 Element design:ReplicateMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Mapping to replicates in the dataset.
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Diagram

Type design:ReplicateMappingType

1.2.41 Element design:TrialDesignType /design:IndividualDosing

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Provides time dependent dosing information for each individual in the study.

Diagram

Type design:IndividualDosingType

1.2.42 Element design:IndividualDosingType /design:ActivityRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to the activity describing the dosing regimen being instantiated here.

Diagram

Type OidRefType

1.2.43 Element design:IndividualDosingType /design:IndividualRef

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Refers to the subject in the study that this dosing regimen is applied to.
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Diagram

Type ColumnRefType

1.2.44 Element design:IndividualDosingType /design:DoseAmount

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the amount of dose.

Diagram

Type ColumnRefType

1.2.45 Element design:IndividualDosingType /design:DosingTime

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the dosing time.

Diagram

Type ColumnRefType

1.2.46 Element design:IndividualDosingType /design:Rate

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the rate of infusion.

Diagram

Type ColumnRefType

1.2.47 Element design:IndividualDosingType /design:Duration

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the duration of infusion.

Diagram

Type ColumnRefType

1.2.48 Element design:IndividualDosingType /design:SSEndTime

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the last dosing time in steady state dosing.

Diagram

Type ColumnRefType

1.2.49 Element design:IndividualDosingType /design:SSPeriod
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Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies the period in steady state dosing.

Diagram

Type ColumnRefType

1.2.50 Element design:Bolus

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies a bolus dosing regiment.

Diagram

Type design:BolusType

Substitution
Group
Affiliation

• design:DosingRegimen

1.2.51 Element design:Infusion

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Specifies a infusion dosing regiment.
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Diagram

Type design:InfusionType

Substitution
Group
Affiliation

• design:DosingRegimen

1.2.52 Element design:ObservationsEvent

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines an observations event in the study,

Diagram

Type design:ObservationsType
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Substitution
Group
Affiliation

• design:StudyEvent

1.2.53 Element design:CovariateMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Mapping to covariates in the dataset.

Diagram

Type design:CovariateMappingType

Substitution
Group
Affiliation

• design:AttributeMapping

1.2.54 Element design:DemographicMapping

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Mapping to demographics in the dataset.

Diagram

Type design:DemographicMappingType

Substitution
Group
Affiliation

• design:AttributeMapping
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1.2.55 Element design:TrialDesign

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the trial design. Top level element of this schema.

Diagram

Type design:TrialDesignType

1.3 Simple Type(s)

1.3.1 Simple Type design:DoseInputTypeType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the dosing input type.

Diagram
Type restriction of xs:NCName

Facets enumeration dose Dose is assigned to a dosing variable.
enumeration target Dose is an input to a system of ODEs.

1.4 Complex Type(s)

1.4.1 Complex Type design:DosingVariableType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations The type that specifies a dosing variable.

Diagram

Attributes
QName Type Use
inputType design:DoseInputTypeTyperequired

Specifies the type of dosing. Is it assigned to a variable or is it an input to a
system of ODEs.

1.4.2 Complex Type design:TreatmentType

Namespace http://www.pharmml.org/2013/03/TrialDesign
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Annotations Describes a treatment, by which we mean one or more regimens that can be appied to a subject.

Diagram

Type extension of design:ActivityType

1.4.3 Complex Type design:ActivityType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations An activity that occurs during dosing.

Diagram

1.4.4 Complex Type design:DosingRegimenType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines a dosing regimen type.

Diagram

1.4.5 Complex Type design:WashoutType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type that defines a washout epoch. When this applies the system is reinitialised.

Diagram

1.4.6 Complex Type design:DosingTimesPointsType
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Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Defines the dosing timepoints.

Diagram

1.4.7 Complex Type design:BolusType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type the defines bolus dosing.

Diagram

Type extension of design:DosingRegimenType

1.4.8 Complex Type design:SteadyStateType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type that specifies steady state dosing.

Diagram

1.4.9 Complex Type design:SteadyStateParameterType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type that defines a paremeter used by steady state dosing.

Diagram

1.4.10 Complex Type design:InfusionType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type the defines infusion dosing.
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Diagram

Type extension of design:DosingRegimenType

1.4.11 Complex Type design:StudyEventType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations
A type defining a study event (a CDISC term). In our case such events are observations take during the
study.

Diagram

Type extension of PharmMLRootType

1.4.12 Complex Type design:ObservationsType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the set of observations taken from a set of subjects.

Diagram

Type extension of design:StudyEventType

1.4.13 Complex Type design:ObservationsGroupType
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Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the timepoint in a study.

Diagram

Type extension of PharmMLRootType

1.4.14 Complex Type design:StudyPeriodType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the time period in a study.

Diagram

Type extension of PharmMLRootType

1.4.15 Complex Type design:StudyTimePointType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the timepoint in a study.

Diagram

Type extension of PharmMLRootType

1.4.16 Complex Type design:EpochDefnType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type that defines an epoch of the study.

Diagram

153



Type extension of design:StudyPeriodType

1.4.17 Complex Type design:ArmDefnType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type defining an arm of the study.

Diagram

Type extension of PharmMLRootType

1.4.18 Complex Type design:CellDefnType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type defining a Cell in the study.

Diagram

Type extension of PharmMLRootType

1.4.19 Complex Type design:SegmentDefnType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type defining a segment of the study.

Diagram

Type extension of PharmMLRootType

1.4.20 Complex Type design:TrialStructureType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type that defines the structure of the study.
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Diagram

Type extension of PharmMLRootType

1.4.21 Complex Type design:TrialDesignType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type that defines the design of the study.

Diagram

Type extension of PharmMLRootType

1.4.22 Complex Type design:PopulationType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations Type defining the population of subjects in the study.

Diagram

Type extension of PharmMLRootType

1.4.23 Complex Type design:DemographicType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations The type defining a demographic attribute of the subject.
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Diagram

Type extension of PharmMLRootType

1.4.24 Complex Type design:IndividualDefinitionType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining a template definition of the individuals in the study.

Diagram

Type extension of PharmMLRootType

1.4.25 Complex Type design:IndividualMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the mapping of the individual identifier to the dataset.

Diagram

Type extension of design:PopulationMappingType

1.4.26 Complex Type design:PopulationMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations
A type defining the mapping from a property of the individual template the the dataset defining each
individual.

Diagram

Type extension of PharmMLRootType
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1.4.27 Complex Type design:ArmMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the mapping of the arm to the dataset.

Diagram

Type extension of design:PopulationMappingType

1.4.28 Complex Type design:IndependentVariableDependentMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the mapping of indendent variable dependent properties.

Diagram

1.4.29 Complex Type design:IndependentVariableMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the independent variable mapping.

Diagram

Type extension of design:PopulationMappingType

1.4.30 Complex Type design:EpochMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining a mapping from the epoch to values in the column of a dataset.

Diagram

Type extension of design:PopulationMappingType
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1.4.31 Complex Type design:ReplicateMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations

A type defining the mapping of values specified in a column of a dataset that defines the number time the
values in this row should be repeated. This is a convenient way of defining groups of individuals with the
same properties, without enumerating each individual explicitly.

Diagram

Type extension of design:PopulationMappingType

1.4.32 Complex Type design:IndividualDosingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Diagram

Type extension of PharmMLRootType

1.4.33 Complex Type design:CovariateMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the mapping of a covariate to the values sepcified in a column of the dataset.

Diagram

Type extension of design:PopulationMappingType
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1.4.34 Complex Type design:DemographicMappingType

Namespace http://www.pharmml.org/2013/03/TrialDesign

Annotations A type defining the mapping of a demographic attribute to the values sepcified in a column of the dataset.

Diagram

Type extension of design:PopulationMappingType
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1 Namespace: "http://www.pharmml.org/2013/03/ModellingSteps"

1.1 Schema(s)

1.1.1 Main schema modellingSteps.xsd

Namespace http://www.pharmml.org/2013/03/ModellingSteps

1.2 Element(s)

1.2.1 Element msteps:SimulationStepType /msteps:Observations

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The observations to be generated by the simulation.

Diagram

Type msteps:ObservationsType

1.2.2 Element msteps:Timepoints

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Diagram

Type msteps:TimepointsType

1.2.3 Element msteps:ObservationsType /msteps:Continuous

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Defines the continuous variable output.

Diagram

Type msteps:ContinuousObservationType

1.2.4 Element msteps:Operation

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The estimation operation to be carried out.

11.4 Modelling Steps
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Diagram

Type msteps:EstimationOperationType

1.2.5 Element msteps:Property

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Specifies a property.

Diagram

Type msteps:OperationPropertyType

1.2.6 Element msteps:EstimationOperationType /msteps:Algorithm

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Specifies the information about the estimation algorithms used.

Diagram

Type msteps:AlgorithmType

1.2.7 Element msteps:StepType /msteps:Dependents
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Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The step dependent on this one.

Diagram

Type msteps:DependentsType

1.2.8 Element msteps:StepDependencyType /msteps:Step

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Defines a step in the dependency graph.

Diagram

Type msteps:StepType

1.2.9 Element msteps:EstimationStepType /msteps:ObjectiveDataSet

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Defines the objective data to use in the estimation.

Diagram

Type msteps:DatasetMappingType

1.2.10 Element msteps:Mapping

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Defines mappings between the dataset and the model.

Diagram
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Type msteps:MappingType

Substitution
Group

• msteps:IndividualMapping

• msteps:VariableMapping

1.2.11 Element msteps:EstimationStepType /msteps:ParametersToEstimate

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Specified the parameters of the model to be estimated.

Diagram

Type msteps:ToEstimateType

1.2.12 Element msteps:ToEstimateType /msteps:ParameterEstimation

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Defines a symbol to be estimated. Note that this cannot be an individual parameter.

Diagram

Type msteps:ParameterEstimateType

1.2.13 Element msteps:ParameterEstimateType /msteps:InitialEstimate

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The initial estimate to use.

Diagram

Type msteps:InitialEstimateType

1.2.14 Element msteps:ParameterEstimateType /msteps:LowerBound
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Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The lower bounds of the estimate.

Diagram

Type ScalarRhs

1.2.15 Element msteps:ParameterEstimateType /msteps:UpperBound

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The upper bounds of the estimate.

Diagram

Type ScalarRhs

1.2.16 Element msteps:CommonModellingStep

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Any modeling step.

Diagram

Type msteps:ModellingStepType

Substitution
Group

• msteps:EstimationStep

• msteps:SimulationStep

1.2.17 Element msteps:ModellingStepsType /msteps:StepDependencies

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations Defines dependencies between steps.

Diagram

Type msteps:StepDependencyType
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1.2.18 Element msteps:ModellingSteps

Namespace http://www.pharmml.org/2013/03/ModellingSteps
Annotations The modelling steps of the model.

Diagram

Type msteps:ModellingStepsType

1.2.19 Element msteps:IndividualMapping

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Specifies the mapping to the individual.

Diagram

Type msteps:IndividualMappingType

Substitution
Group
Affiliation

• msteps:Mapping

1.2.20 Element msteps:VariableMapping

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Specifies a mapping to a variable in the model.
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Diagram

Type msteps:VariableMappingType

Substitution
Group
Affiliation

• msteps:Mapping

1.2.21 Element msteps:EstimationStep

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations An estimation step.

Diagram

Type msteps:EstimationStepType

Substitution
Group
Affiliation

• msteps:CommonModellingStep
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1.2.22 Element msteps:SimulationStep

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations A simulation step.

Diagram

Type msteps:SimulationStepType

Substitution
Group
Affiliation

• msteps:CommonModellingStep

1.3 Simple Type(s)

1.3.1 Simple Type msteps:EstimationOpTypeType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type specifying the types of estimation operation.

Diagram
Type restriction of SymbolIdType

1.3.2 Simple Type msteps:PropertyNameType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining a property name.

Diagram
Type xs:NCName
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1.4 Complex Type(s)

1.4.1 Complex Type msteps:SimulationStepType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining a simulation step.

Diagram

Type extension of msteps:ModellingStepType

1.4.2 Complex Type msteps:ModellingStepType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Abstract type specifying the common features of a modelling step.

Diagram

Type extension of PharmMLRootType

1.4.3 Complex Type msteps:ObservationsType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the observation timepoints.

Diagram

Type extension of PharmMLRootType

1.4.4 Complex Type msteps:TimepointsType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Timepoints.
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Diagram

Type extension of PharmMLRootType

1.4.5 Complex Type msteps:ContinuousObservationType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the type of a continuous observation variable to be simulated.

Diagram

1.4.6 Complex Type msteps:EstimationOperationType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the estimation operation.

Diagram

Type extension of PharmMLRootType

1.4.7 Complex Type msteps:OperationPropertyType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining an operation property.

Diagram

Type extension of PharmMLRootType

1.4.8 Complex Type msteps:AlgorithmType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the type of the algorithm.
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Diagram

Type extension of PharmMLRootType

1.4.9 Complex Type msteps:DependentsType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the dependent steps.

Diagram

Type extension of PharmMLRootType

1.4.10 Complex Type msteps:StepType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining a modelling step and its dependencies.

Diagram

Type extension of PharmMLRootType

1.4.11 Complex Type msteps:StepDependencyType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining step dependencies.

Diagram

Type extension of PharmMLRootType

1.4.12 Complex Type msteps:EstimationStepType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the estimation step.
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Diagram

Type extension of msteps:ModellingStepType

1.4.13 Complex Type msteps:DatasetMappingType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining a mapping of objective data to the model.

Diagram

Type extension of PharmMLRootType

1.4.14 Complex Type msteps:MappingType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Abstract type that defines a mapping.

Diagram

Type extension of PharmMLRootType

1.4.15 Complex Type msteps:ToEstimateType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the parameters to be estimated.

Diagram

Type extension of PharmMLRootType

1.4.16 Complex Type msteps:ParameterEstimateType
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Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining paramaters to be estimated and their bounds and initial estimates.

Diagram

Type extension of PharmMLRootType

1.4.17 Complex Type msteps:InitialEstimateType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type specifying an initial estimate.

Diagram

Type extension of ScalarRhs

1.4.18 Complex Type msteps:IndividualMappingType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining the mapping of a dataset to the individual.

Diagram

Type extension of msteps:MappingType

1.4.19 Complex Type msteps:VariableMappingType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations Type defining a maping to a variable in the model.

Diagram

Type extension of msteps:MappingType
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1.4.20 Complex Type msteps:ModellingStepsType

Namespace http://www.pharmml.org/2013/03/ModellingSteps

Annotations A type defining the modelling steps section.

Diagram

Type extension of PharmMLRootType

2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute msteps:OperationPropertyType /@name

Namespace No namespace

Annotations The name of the property.

Type msteps:PropertyNameType

2.1.2 Attribute msteps:AlgorithmType /@definition

Namespace No namespace
Annotations The estimation operation type.
Type xs:anyURI

2.1.3 Attribute msteps:EstimationOperationType /@order

Namespace No namespace

Annotations Specifies the order of the operation.

Type xs:positiveInteger

2.1.4 Attribute msteps:EstimationOperationType /@opType

Namespace No namespace

Annotations Specifies an estimation operation type.

Type msteps:EstimationOpTypeType

2.1.5 Attribute msteps:InitialEstimateType /@fixed

Namespace No namespace

Annotations Specifies whether the initial estimate is fixed. If it is then this means that this parameter is not estimated,
but assigned. If fixed is true then the upper and lower bounds are ignored.
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Type xs:boolean
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1 Namespace: "http://www.pharmml.org/2013/03/CommonTypes"

1.1 Schema(s)

1.1.1 Main schema commonTypes.xsd

Namespace http://www.pharmml.org/2013/03/CommonTypes

1.2 Element(s)

1.2.1 Element ct:Description

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element provides additional documentation about its parent element.

Diagram

Type ct:AnnotationType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.2 Element ct:Scalar

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations
An element that defines a scalar value. This element is abstract the specific scalar elements are specified
by the substitution group.

Diagram

11.5 Common Types
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Substitution
Group

• ct:Int

• ct:Real

• ct:String

• ct:Id

• ct:Boolean

• ct:True

• ct:False

1.2.3 Element ct:SymbRef

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element references a symbol defined elsewhere in the document.

Diagram

Type ct:SymbolRefType

Attributes

QName Type Use
blkIdRef ct:BlockIdType optional

ID referencing a Block.
id ct:IdType optional

The element identifier.
symbIdRef ct:SymbolIdType required

ID referencing a Symbol.

1.2.4 Element ct:Sequence

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element defines a uniform sequence of values.
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Diagram

Type ct:SequenceType

Substitution
Group
Affiliation

• ct:Arrays

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.5 Element ct:SequenceType /ct:Begin

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The initial value of the sequence.
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Diagram

Type ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.6 Element ct:Vector

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element deines a vector of values.

Diagram
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Type ct:VectorType

Substitution
Group
Affiliation

• ct:Arrays

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.7 Element ct:SequenceType /ct:StepSize

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The amount incremented to get the next value in the sequence. The step size can be negative

Diagram

Type ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.8 Element ct:SequenceType /ct:End

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The maximum possible value of the sequence.
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Diagram

Type ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.9 Element ct:SequenceType /ct:Repetitions

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The number of times to incrememnt the sequence by the step size.
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Diagram

Type ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.10 Element ct:Symbol

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element defining the name of the symbol.

Diagram

Type ct:SymbolNameType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.11 Element ct:Assign

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations This element indicates that the value(s) or equation defined by its child elements are to be assigned to its
parent element. It is the equivalent of an assignment operator.
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Diagram

Type ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.12 Element ct:DerivativeVariableType /ct:IndependentVariable

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The independent variable of the derivative.

Diagram

Type ct:IndependentVariableReferenceType

1.2.13 Element ct:DerivativeVariableType /ct:InitialCondition

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The value of the initial condition.
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Diagram

Type ct:InitialConditionType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.14 Element ct:FunctionDefinitionType /ct:FunctionArgument

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The argument (parameter) to the function.

Diagram

Type ct:FuncParameterDefinitionType
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Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the function definition.

1.2.15 Element ct:FunctionDefinitionType /ct:Definition

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The body of the function defintion.

Diagram

Type ct:ScalarRhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.16 Element ct:OidRef

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations An element that provides a reference to an OID.
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Diagram

Type ct:OidRefType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.
oidRef ct:oidType required

1.2.17 Element ct:Int

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations The element defines an integer value. It is a scalar.

Diagram

Type ct:IntValueType

Substitution
Group
Affiliation

• ct:Scalar

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.18 Element ct:Real

Namespace http://www.pharmml.org/2013/03/CommonTypes
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Annotations The element defines an real value. It is a scalar.

Diagram

Type ct:RealValueType

Substitution
Group
Affiliation

• ct:Scalar

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.19 Element ct:String

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations The element defines an string value. It is a scalar.

Diagram

Type ct:StringValueType

Substitution
Group
Affiliation

• ct:Scalar

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.20 Element ct:Id
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Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations Element defines a value of type Id.

Diagram

Type ct:IdValueType

Substitution
Group
Affiliation

• ct:Scalar

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.21 Element ct:Boolean

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations This abstract element defines an Booelan value.

Diagram
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Type ct:BooleanType

Substitution
Group

• ct:True

• ct:False

Substitution
Group
Affiliation

• ct:Scalar

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.22 Element ct:True

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations This element defines a TRUE Booelan value.

Diagram

Type ct:TrueBooleanType

Substitution
Group
Affiliation

• ct:Boolean

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.23 Element ct:False
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Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations This element defines a FALSE Booelan value.

Diagram

Type ct:FalseBooleanType

Substitution
Group
Affiliation

• ct:Boolean

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.24 Element ct:Name

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element defines a human readable/display name for its parent element.

Diagram

Type ct:NameType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.
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1.2.25 Element ct:Arrays

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations An abstract element that defines an array of values.

Diagram

Substitution
Group

• ct:Sequence

• ct:Vector

1.2.26 Element ct:CommonVariable

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations An abstract element that defines a variety of variable declarations. The possible variable declarations are
defined by the substitution group.

Diagram

Type ct:CommonVariableDefinitionType

Substitution
Group

• ct:Variable

• ct:DerivativeVariable
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Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.

1.2.27 Element ct:Variable

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element specifies a standard variable definition.

Diagram

Type ct:VariableDefinitionType

Substitution
Group
Affiliation

• ct:CommonVariable
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Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the variable.

1.2.28 Element ct:DerivativeVariable

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element specifies a derivative variable definition.

Diagram

Type ct:DerivativeVariableType
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Substitution
Group
Affiliation

• ct:CommonVariable

Attributes

QName Type Fixed Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType real required

The symbol type of a derivative variable is always set to be a real.

1.2.29 Element ct:VariableAssignment

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Element specifies a variable assignment.

Diagram

Type ct:VariableAssignmentType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.30 Element ct:VariabilityReference

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations The element provides a reference to a variability level. It associates its parent element with the reference
variability level.
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Diagram

Type ct:LevelReferenceType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.2.31 Element ct:FunctionDefinition

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations This element defines a function within the PharmML document.
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Diagram

Type ct:FunctionDefinitionType

Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the function definition.

1.3 Simple Type(s)

1.3.1 Simple Type ct:SymbolTypeType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Defines the symbol types. Restricted to the available types.
Diagram
Type restriction of xs:token

Facets

enumeration int
enumeration real
enumeration boolean
enumeration string
enumeration id
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1.3.2 Simple Type ct:SymbolIdType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type for symbols identifiers.
Diagram
Type xs:NCName

1.3.3 Simple Type ct:BlockIdType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type for block identifiers.
Diagram
Type xs:NCName

1.3.4 Simple Type ct:oidType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type for OID identifiers.
Diagram
Type xs:NCName

1.3.5 Simple Type ct:IdType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type of the element identifier.
Diagram
Type xs:NCName

1.4 Complex Type(s)

1.4.1 Complex Type ct:IntValueType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Integer value.

Diagram

Type extension of xs:integer

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.2 Complex Type ct:RealValueType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Real value.
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Diagram

Type extension of xs:double

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.3 Complex Type ct:StringValueType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations String value.

Diagram

Type extension of xs:string

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.4 Complex Type ct:BooleanType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations A Boolean type.

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.5 Complex Type ct:PharmMLRootType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Root type of all elements and types defining elements in PharmML.
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Diagram

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.6 Complex Type ct:AnnotationType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Diagram

Type extension of xs:string

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.7 Complex Type ct:TrueBooleanType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations A literal Boolean value for true.

Diagram

Type extension of ct:BooleanType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.8 Complex Type ct:FalseBooleanType
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Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations A literal Boolean value for false.

Diagram

Type extension of ct:BooleanType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.9 Complex Type ct:IdValueType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations A literal Id value. This has a type of `id’.

Diagram

Type extension of xs:NCName

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.10 Complex Type ct:OidRefType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type used by element referencing an OID.
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Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.
oidRef ct:oidType required

1.4.11 Complex Type ct:SymbolRefType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Diagram

Type extension of ct:PharmMLRootType

Attributes

QName Type Use
blkIdRef ct:BlockIdType optional

ID referencing a Block.
id ct:IdType optional

The element identifier.
symbIdRef ct:SymbolIdType required

ID referencing a Symbol.

1.4.12 Complex Type ct:ScalarRhs
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Namespace http://www.pharmml.org/2013/03/CommonTypes

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.13 Complex Type ct:Rhs

Namespace http://www.pharmml.org/2013/03/CommonTypes

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.
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1.4.14 Complex Type ct:SequenceType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations

The definition of a uniform sequence of numbers. Conceptually is has two forms. The first form takes an
initial number, a step size and the last number. The sequence starts at the first number and a new value,
incremented by the step size, is added to the sequence until this value exceeds the end value. In the second
the step size is incremented r times, where r is the number of repetitions.

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.15 Complex Type ct:VectorType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations

The definition of a non-uniform sequence of numbers. The vector is an ordered list of values. The values
of the sequence element are inserted into the vector at the point of definition. For example, take the vector
(the [] brackets denote a sequence): 0, 4, [0:1:3], 33. Inserting the sequence gives us the vector of values:
0, 4, 0, 1, 2, 3, 33.
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Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.16 Complex Type ct:CommonVariableDefinitionType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations An abstract type defining the comment properties of a variable definition.

Diagram

Type extension of ct:PharmMLRootType

Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.

1.4.17 Complex Type ct:SymbolNameType

Namespace http://www.pharmml.org/2013/03/CommonTypes
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Annotations Type defining the name of the symbol in a form suitable for display. Currently this should be plain text
and not include any markup.

Diagram

Type extension of ct:SymbolIdType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.18 Complex Type ct:VariableDefinitionType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations
A standard variable definition. Elements defined unsing this XML Schema Type have a Symbol type in
addition to other common variable definition properties.

Diagram

Type extension of ct:CommonVariableDefinitionType
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Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the variable.

1.4.19 Complex Type ct:IndependentVariableReferenceType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations References the independent variable.

Diagram

1.4.20 Complex Type ct:InitialConditionType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The initial condition of the derivative variable.

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.21 Complex Type ct:DerivativeVariableType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The type specifying a derivative variable.

205



Diagram

Type extension of ct:CommonVariableDefinitionType

Attributes

QName Type Fixed Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType real required

The symbol type of a derivative variable is always set to be a real.

1.4.22 Complex Type ct:FunctionDefinitionType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations This defines a function that can be used elsewhere in the PharmML document.
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Diagram

Type extension of ct:CommonVariableDefinitionType

Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the function definition.

1.4.23 Complex Type ct:FuncParameterDefinitionType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations Defines a function argument defintion type. The function argument has a symbol identifier, an optional
name and a type.
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Diagram

Type extension of ct:CommonVariableDefinitionType

Attributes

QName Type Use
id ct:IdType optional

The element identifier.
symbId ct:SymbolIdType required

The symbol id used to define the variable.
symbolType ct:SymbolTypeType required

The type of the function definition.

1.4.24 Complex Type ct:LevelReferenceType

Namespace http://www.pharmml.org/2013/03/CommonTypes

Annotations A reference to a variability level.

Diagram

Type extension of ct:PharmMLRootType
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Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.25 Complex Type ct:NameType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations Type specifying a descriptive name that can be displayed and so sshould be human readable.

Diagram

Type extension of xs:string

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.26 Complex Type ct:VariableAssignmentType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations A type that specifies a variable assignment.

Diagram

Type extension of ct:PharmMLRootType

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

1.4.27 Complex Type ct:AssignType

Namespace http://www.pharmml.org/2013/03/CommonTypes
Annotations The type specifies an assignment of a value(s) or equation to another element in the PharmML document.
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Diagram

Type extension of ct:Rhs

Attributes
QName Type Use
id ct:IdType optional

The element identifier.

2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute ct:SymbolRefType /@blkIdRef

Namespace No namespace
Annotations ID referencing a Block.
Type ct:BlockIdType

2.1.2 Attribute ct:SymbolRefType /@symbIdRef

Namespace No namespace
Annotations ID referencing a Symbol.
Type ct:SymbolIdType

2.1.3 Attribute ct:CommonVariableDefinitionType /@symbId

Namespace No namespace
Annotations The symbol id used to define the variable.
Type ct:SymbolIdType
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2.1.4 Attribute ct:VariableDefinitionType /@symbolType

Namespace No namespace
Annotations The type of the variable.
Type ct:SymbolTypeType

Facets

enumeration int
enumeration real
enumeration boolean
enumeration string
enumeration id

2.1.5 Attribute ct:DerivativeVariableType /@symbolType

Namespace No namespace
Annotations The symbol type of a derivative variable is always set to be a real.
Type ct:SymbolTypeType

Facets

enumeration int
enumeration real
enumeration boolean
enumeration string
enumeration id

2.1.6 Attribute ct:FuncParameterDefinitionType /@symbolType

Namespace No namespace

Annotations The type of the function definition.

Type ct:SymbolTypeType

Facets

enumeration int
enumeration real
enumeration boolean
enumeration string
enumeration id

2.1.7 Attribute ct:FunctionDefinitionType /@symbolType

Namespace No namespace

Annotations The type of the function definition.

Type ct:SymbolTypeType

Facets

enumeration int
enumeration real
enumeration boolean
enumeration string
enumeration id

211



1 Namespace: "http://www.pharmml.org/2013/08/Dataset"

1.1 Schema(s)

1.1.1 Main schema dataset.xsd

Namespace http://www.pharmml.org/2013/08/Dataset
Annotations The schema defines the dataset and it related structures used in a PharmML document.

1.2 Element(s)

1.2.1 Element ColumnRef

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Element to a column in a dataset or nested table.

Diagram

Type ColumnRefType

1.2.2 Element DataSetTableType /Row

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations A row in the dataset.

Diagram

Type DatasetRowType

1.2.3 Element Table

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Element specifies the content of the dataset or nested table.

Diagram

Type DataSetTableType

11.6 Dataset
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1.2.4 Element Definition

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Defines the columns and nested tables in a dataset or nested table.

Diagram

Type ColumnsDefinitionType

1.2.5 Element ColumnsDefinitionType /Column

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Defines a column in the dataset.

Diagram

Type ColumnDefnType

Attributes

QName Type Use
columnId SymbolIdType required

The name to give the column.
valueType ColumnValueTypeType required

The column number in the reosurce to use for this column.

1.2.6 Element ColumnsDefinitionType /Table

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Defines a nested table.
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Diagram

Type DataSetTableDefnType

Attributes
QName Type Use
tableId oidType required

The identifier of the nested table column.

1.2.7 Element DataSet

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations

This element specifies a dataset in PharmML. Its children define its structure and the data associate with it.
More information about the dataset can be found in the Language Overview chapter in the PharmML
specification.

Diagram

Type DataSetType

1.3 Simple Type(s)

1.3.1 Simple Type ColumnValueTypeType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Type specifying the permitted column types.

Diagram
Type SymbolTypeType

1.4 Complex Type(s)

1.4.1 Complex Type ColumnRefType
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Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Type specified a reference to a column in a dataset.

Diagram

Type extension of PharmMLRootType

1.4.2 Complex Type DataSetTableType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations The type specifies the content of a dataset or nested table.

Diagram

1.4.3 Complex Type DatasetRowType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations
This type specifies a row of values in the dataset. The row contains a cell which is a scalar value, null or a
nested table.

Diagram

1.4.4 Complex Type DataSetType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations
The type specifying the dataset. The dataset is decribed in more detail in the Language Overview section
of the specification.

Diagram

Type extension of PharmMLRootType

1.4.5 Complex Type ColumnsDefinitionType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Type specifies all the columns in a dataset or nested table.
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Diagram

Type extension of PharmMLRootType

1.4.6 Complex Type ColumnDefnType

Namespace http://www.pharmml.org/2013/08/Dataset

Diagram

Type extension of CommonColumnDefnType

Attributes

QName Type Use
columnId SymbolIdType required

The name to give the column.
valueType ColumnValueTypeType required

The column number in the reosurce to use for this column.

1.4.7 Complex Type CommonColumnDefnType

Namespace http://www.pharmml.org/2013/08/Dataset

Diagram

Type extension of PharmMLRootType

1.4.8 Complex Type DataSetTableDefnType

Namespace http://www.pharmml.org/2013/08/Dataset

Annotations Type that specifies the definition of a nested table.
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Diagram

Type extension of CommonColumnDefnType

Attributes
QName Type Use
tableId oidType required

The identifier of the nested table column.

2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute ColumnRefType /@columnIdRef

Namespace No namespace
Annotations Refers to a column in a dataset. This can be a column or a nested table.
Type SymbolIdType

2.1.2 Attribute CommonColumnDefnType /@columnNum

Namespace No namespace
Annotations The column number in the reosurce to use for this column.
Type xs:positiveInteger

2.1.3 Attribute ColumnDefnType /@columnId

Namespace No namespace
Annotations The name to give the column.
Type SymbolIdType

2.1.4 Attribute ColumnDefnType /@valueType

Namespace No namespace
Annotations The column number in the reosurce to use for this column.
Type ColumnValueTypeType

2.1.5 Attribute DataSetTableDefnType /@tableId
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Namespace No namespace

Annotations The identifier of the nested table column.

Type oidType
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1 Namespace: "http://www.pharmml.org/2013/03/Maths"

1.1 Schema(s)

1.1.1 Main schema maths.xsd

Namespace http://www.pharmml.org/2013/03/Maths

1.2 Element(s)

1.2.1 Element math:Constant

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A constant symbol.

Diagram

Type math:ConstantType

Attributes
QName Type Use

op restriction of
xs:Name required

The type of constant.

1.2.2 Element math:Binop

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A binary operator.

11.7 Maths
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Diagram

Type math:BinopType

Attributes
QName Type Use

op restriction of
xs:Name required

The binary operator type. See the specification for a more detailed description.

1.2.3 Element math:Uniop

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A unary operator.
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Diagram

Type math:UniopType

Attributes
QName Type Use

op restriction of
xs:Name required

The operator. More detail in the specification.

1.2.4 Element math:FunctionCall

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A function call.

Diagram

Type math:FunctionCallType

1.2.5 Element math:FunctionCallType /math:FunctionArgument

Namespace http://www.pharmml.org/2013/03/Maths
Annotations An argument of the function.
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Diagram

Type extension of math:FunctionArgumentType

Attributes
QName Type Use
symbId SymbolIdType required

The symbold ID of the argument.

1.2.6 Element math:Equation

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A mathematical expression that is evaluated to a scalar type.

Diagram

Type extension of math:EquationType

1.2.7 Element math:EquationType /math:Piecewise

Namespace http://www.pharmml.org/2013/03/Maths
Annotations Defines a piecewise expression.

Diagram

Type math:PiecewiseType

1.2.8 Element math:PiecewiseType /math:Piece
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Namespace http://www.pharmml.org/2013/03/Maths
Annotations Defines a piece in the piecewise function.

Diagram

Type math:PieceType

1.2.9 Element math:Condition

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A condition defined by a logical expression. Can be evaluated to True or False.

Diagram

Type extension of math:LogicConditionType

1.2.10 Element math:LogicBinop

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A logical binary operator used in logical expressions.
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Diagram

Type math:LogicBinOpType

Attributes
QName Type Use

op restriction of
xs:Name required

The logical binary operator type.

1.2.11 Element math:LogicUniop

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A logical unary operator used in logical expressions.
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Diagram

Type math:LogicUniOpType

Attributes
QName Type Use

op restriction of
xs:Name required

The unary operator type.

1.2.12 Element math:Otherwise

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The otherwise case in a piecewise function.
Diagram

1.3 Complex Type(s)

1.3.1 Complex Type math:BinopType

Namespace http://www.pharmml.org/2013/03/Maths

Annotations A binary operator describing a numerical operation. Takes two operands (as you would expect).
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Diagram

Attributes
QName Type Use

op restriction of
xs:Name required

The binary operator type. See the specification for a more detailed description.

1.3.2 Complex Type math:ConstantType

Namespace http://www.pharmml.org/2013/03/Maths

Annotations The schema type defining a mathematical constant.

Diagram

Attributes
QName Type Use

op restriction of
xs:Name required

The type of constant.

1.3.3 Complex Type math:UniopType

Namespace http://www.pharmml.org/2013/03/Maths

Annotations The unary operator type. Takes one operator.
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Diagram

Type extension of math:ExprType

Attributes
QName Type Use

op restriction of
xs:Name required

The operator. More detail in the specification.

1.3.4 Complex Type math:ExprType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The schema type defining a mathematical expression.

Diagram

1.3.5 Complex Type math:FunctionCallType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A type defining a function call.

Diagram

1.3.6 Complex Type math:FunctionArgumentType
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Namespace http://www.pharmml.org/2013/03/Maths
Annotations A type defining an argument of a function being called.

Diagram

Attributes
QName Type Use
symbId SymbolIdType required

The symbold ID of the argument.

1.3.7 Complex Type math:EquationType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations Complex Type that defines a mathematical equation.

Diagram

1.3.8 Complex Type math:PiecewiseType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The schema type defining a piecewise function.

Diagram

1.3.9 Complex Type math:PieceType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The schema type defining a `piece’ in a piecewise function.
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Diagram

Type extension of math:ExprType

1.3.10 Complex Type math:LogicConditionType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The schema type defining logical condition.

Diagram

1.3.11 Complex Type math:LogicBinOpType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations The schema type defining a binary logical operator.
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Diagram

Attributes
QName Type Use

op restriction of
xs:Name required

The logical binary operator type.

1.3.12 Complex Type math:LogicUniOpType

Namespace http://www.pharmml.org/2013/03/Maths

230



Diagram

Type extension of math:LogicExprType

Attributes
QName Type Use

op restriction of
xs:Name required

The unary operator type.

1.3.13 Complex Type math:LogicExprType

Namespace http://www.pharmml.org/2013/03/Maths
Annotations A logical expression.

Diagram
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2 Namespace: ""

2.1 Attribute(s)

2.1.1 Attribute math:ConstantType /@op

Namespace No namespace
Annotations The type of constant.
Type restriction of xs:Name

Facets
enumeration notanumber
enumeration pi
enumeration exponentiale
enumeration infinity

2.1.2 Attribute math:LogicUniOpType /@op

Namespace No namespace
Annotations The unary operator type.
Type restriction of xs:Name

Facets enumeration isDefined
enumeration not

2.1.3 Attribute math:LogicBinOpType /@op

Namespace No namespace
Annotations The logical binary operator type.
Type restriction of xs:Name

Facets

enumeration lt
enumeration leq
enumeration gt
enumeration geq
enumeration eq
enumeration neq
enumeration and
enumeration or
enumeration xor

2.1.4 Attribute math:FunctionArgumentType /@symbId

Namespace No namespace
Annotations The symbold ID of the argument.
Type SymbolIdType

2.1.5 Attribute math:UniopType /@op

Namespace No namespace
Annotations The operator. More detail in the specification.
Type restriction of xs:Name
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Facets

enumeration exp
enumeration log
enumeration minus
enumeration factorial
enumeration sin
enumeration cos
enumeration tan
enumeration sec
enumeration csc
enumeration cot
enumeration sinh
enumeration cosh
enumeration tanh
enumeration sech
enumeration csch
enumeration coth
enumeration arcsin
enumeration arccos
enumeration arctan
enumeration arcsec
enumeration arccsc
enumeration arccot
enumeration arcsinh
enumeration arccosh
enumeration arctanh
enumeration arcsech
enumeration arccsch
enumeration arccoth
enumeration floor
enumeration abs
enumeration ceiling
enumeration logistic
enumeration logit
enumeration probit

2.1.6 Attribute math:BinopType /@op

Namespace No namespace
Annotations The binary operator type. See the specification for a more detailed description.
Type restriction of xs:Name

Facets

enumeration plus
enumeration minus
enumeration times
enumeration divide
enumeration power
enumeration logx
enumeration root

233



CHAPTER 12
Validation of PharmML

12.1 Introduction
In this section we provide detailed rules about what constitutes a valid PharmML document. Where 5

possible we have tried to keep each rule definition discrete and also we have provided a unique iden-
tifier for such rules. We recommend that developers implementing support for PharmML validation
report such rule identifiers in their error messages. Users can then cross-reference such errors with
this specification if they require more detailed information.

The rules are organised so that we cover the basic language features and constructs first and then 10

go into specific rules for each of the sections of a PharmML document: Model Definition, Trial
Design and Modelling Steps.

12.2 Rule Identification
The rule numbers use in this chapter are not consistent with those in the previous specification. Be-
cause so many rules changed since the last version of PharmML, particularly in the trial design sec- 15

tion, that we decided to start afresh. However, our intention is that the rule numbers used here will
be persistent1. Certainly within major releases of PharmML. In practice this means is a rule becomes
obsolete then it will not be reused and if it changes significantly in substance then again it will be
discarded and a new rule created in it’s place. This means that rule numbers are not sequential and
will have gaps in number over time. 20

12.3 Namespaces and Scopes

12.3.1 Defining Symbols and Objects
The namespaces and scopes used in PharmML are shown in figure 12.1. By namespace we mean
essentially a dictionary of names, in which each name must be unique within its given scope. As you
can see. As you can see from the figure there are two namespaces, one which defines the symbols used 25

to describe the model (for more background information read section 6.3.2) and the other (namespace
Element) is used to allow the PharmML document to be cross references externally (see section 6.10).
The symbols can be classified as follows:

1Keeping rule numbers persistent will help users and developers as they move between different versions of Phar-
mML. If validation reports an error with the same number in different versions of PharmML then you can be sure that it
is the same rule.
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12.3. Namespaces and Scopes

Global

Independent Variable

Block

Function
Definition

Function
Argument

Simple ParameterVariability Level

Covariate Category Individual Parameter

Random Variable

Variable

Namespace: Symbol and Object Namespace:
Element

Global

Element ID

Object

Figure 12.1: An overview of the scopes and namespaces used in PharmML. The class of symbols
within the scope are shown as lozenges, symbols that also define a scope are rounded rectangles and
the global scope is shown as rectangles. So for example, the function argument is a class of symbol
that is scoped by the function definition which in turn belongs to the global scope.

Independent Variable A special variable that defines the independent variable used throughout the
model.

Function Definition A function that can be reused throughout the PharmML document.

Function Argument The parameters of the function. Their scope extends into the body of the func-
tion as you would expect. For example: f(x) = x+ 1. 5

Object An identifier used to uniquely identify conceptual objects within the PharmML document.

Block An identifier that defines a model within the Model Definition section of PharmML. This
provides a scope for symbols defined within the block and gives the model definition a degree
of modularity.

Variability Level A symbol that defines a level of random variability. 10

Covariate A symbol that defines variability associated with an individual. It can be continuous or
categorical. In the latter case categories are scoped by the covariate symbol.

Category A category of a categorical covariate.

Simple Parameter A parameter that cannot be assigned a random variable.

Individual Parameter A parameter that can be assigned a random variable. 15

Random Variable A special parameter than is described by a probability distribution.

Variable A variable in the model. This is distinguished from a parameter in that it can change over
time, while a parameter cannot.

Element ID An identifier used by external resources to identify a specific element within the Phar-
mML document. 20
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12.3. Namespaces and Scopes

Using these concepts we can apply the following rule:

S1 Symbols must belong to one of the classes described above.

S2 The scope and namespace of a symbol is determined by its class. The scope and namespace of
each class is described in figure 12.1.

S3 Symbols must be unique with their scopes. Duplicate symbols are not permitted within a given 5

namespace.

12.3.2 Symbol Resolution
Symbols must be resolved using the scoping rules. This is described in detail in section 6.3.2. Sym-
bols are typically referred to using the <SymbRef> element and objects by the <OidRef> element
or XML elements of type OidRefType. Resolution rules are: 10

S4 References to symbols and objects must resolved. Dangling references are not permitted.

S5 The resolved symbol must be compatible PharmML component referencing it. By this we mean
that an <ArmRef> which should match an arm definition should not point to an Epoch defini-
tion. Compatibility is defined in the table below.

S6 A <SymbRef> element must only reference symbols that are compatible with its parent element. 15

Compatibility is defined by table 12.1.

S7 A <OidRef> element or element using the type OidRefType must only reference objects that
are compatible with its parent element. Compatibility is defined by table 12.2.

Table 12.1: This table describes the compatibility of symbol references defined using <SymbRef>.
The comparability is with the parent elements that use the <SymbRef> to refer to other symbols
within the PharmML document. In the table the Reference Parent column describes the element
which is the immediate parent of the <SymbRef> element. The target column specifies the set of
elements that can be the target of this reference. Where the parent element is required to identify the
correct element a ’path’ is indicated using the ’/’ symbol. Where more than one element is possible
each option is separated by the ’|’ symbol.

Reference Parent Target

VariableAssignment SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-
vidualParameter|Variable | DerivativeVariable

ParentLevel VariabilityModel/Levela

PopulationParameter SimpleParameter
LinearCovariate/Covariate CovariateModel/Covariate
FixedEffect SimpleParameter
GeneralCovariate SimpleParameter | CovariateModel/Covariate

continues on next page

aThe correct target is also affected by rule M7.
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12.3. Namespaces and Scopes

continued from previous page

Reference Parent Target

GaussianModel/RandomEffects RandomVariable
IndividualParameter/Assign SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-

vidualParameter
VariabilityReference VariabilityModel/Level
SimpleParameter SimpleParameter
RandomVariable1 RandomVariable
RandomVariable2 RandomVariable
CorrelationCoefficient SimpleParameter
Covariance SimpleParameter
Variable SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-

vidualParameter|Variable | DerivativeVariable
DerivativeVariable/Assign SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-

vidualParameter | Variable | DerivativeVariable
DerivativeVariable/IndependentVariable Variable
InitialCondition SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-

vidualParameter |Variable |DerivativeVariable
ObservationModel/General SimpleParameter | CovariateModel/Covariate | RandomVariable | Indi-

vidualParameter
ObservationModel/Standard/Output Variable | DerivativeVariable
ErrorModel FunctionDefinition | SimpleParameter | IndividualParameter | Random-

Variable
RandomError RandomVariable
DoseAmount Variable | DerivativeVariablea

SteadyState/EndTime Variable | DerivativeVariable
SteadyState/Interval Variable | DerivativeVariable
DosingTimes Variable | DerivativeVariable
Duration Variable | DerivativeVariable
Rate Variable | DerivativeVariable
CovariateMapping Covariate
SimulationStep/Observations/Continuous Variable/DerivativeVariable
ParameterEstimation SimpleParameter | IndividualParameter | Covariate
InitialEstimate Variable | DerivativeVariable | FunctionDefinition | SimpleParameter | In-

dividualParameter | RandomVariable
LowerBound Variable | DerivativeVariable | FunctionDefinition | SimpleParameter | In-

dividualParameter | RandomVariable
UpperBound Variable | DerivativeVariable | FunctionDefinition | SimpleParameter | In-

dividualParameter | RandomVariable

aThe choice of valid target is governed by rule D11.
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12.4. Type System

Table 12.2: This table describes the compatibility of object references defined using <OidRef> or
from elements of type OidRefType. The comparability is with the parent elements that use the
above to refer to objects within the PharmML document. In the table the Reference Parent column
describes the element which is the immediate parent of the reference element. The target column
specifies the set of elements that can be the target of the reference. Where the parent element is
required to identify the correct element a ’path’ is indicated using the ’/’ symbol. Where more than
one element is possible each option is separated by the ’|’ symbol.

Reference Parent Target

EpochRef Epoch

ArmRef Arm

SegmentRef Segment

ActivityRef Activity

DemographicMapping Demographic

Step SimulationStep | EstimationStep

Dependents SimulationStep | EstimationStep

12.4 Type System

12.4.1 Types
PharmML has the types in the following table. Some types can be automatically converted (promoted)
to another type. The rules are described below, with detailed information provides in the following 5

tables.

S8 PharmML has a type system and all symbols and elements, if they have a type must conform it.
The types are specified in table 12.3.

S9 Symbol classes have a type. The types are specified in table 12.4.

S10 Some XML elements have a type. The types are specified in table 12.5. 10

S11 Elements must be associated with quantities of same type Quantities associated elements in a
PharmML document, must be of the same type. The type of the relevant elements are described
in table 12.5.

S12 Literal values have a type. The types of literal values are specified in table 12.6.
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12.4. Type System

Table 12.3: Symbols can be created using these types. The types that can be used with each symbol
class can vary. In other cases the type is implicit. This information is defined in the table below. Note
that if the type is “explicit” then this means that the range of possible types are specified in the XML
document and that the possible types are encoded in the XML Schema definition.

Name Promotion Definition

real real Values of this type should conform to the double type defined by XML
Schema (see http://www.w3.org/TR/xmlschema-2/#double).

int real Values of this type should conform to the integer type defined by XML
Schema (see http://www.w3.org/TR/xmlschema-2/#integer).

array array A one-dimensional array of real values.

string string The definition of string conforms to the XML Schema definition (see http:
//www.w3.org/TR/xmlschema-2/#string).

boolean boolean A two-valued logic value (True or False). In PharmML we com-
ply with the XML Schema definition (see http://www.w3.org/TR/
xmlschema-2/#boolean).

id id An identifier string, defined as equivalent to a non-colonised named in XMl
Schema (see http://www.w3.org/TR/xmlschema-2/#NCName).

void void A non-type. For consistency in defining language rules it is useful to give
some symbols a type that do not have one in any meaningful sense. In such
cases we use this type.

Table 12.4: Each symbol class has one or more types that it can be assigned to. If a type is defined as
“explicit” then this means that the type is specified as part of the definition of that symbol.

Symbol class Implicit Type

Independent Variable real

Function Definition explicit

Function Argument explicit

Object void

Block void

Variability Level void

Covariate
continuous: real

categorical: id

Simple Parameter real

continues on next page
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12.4. Type System

continued from previous page

Symbol class Implicit Type

Individual Parameter real

Random Variable real

Variable explicit

Element ID void

Table 12.5: As well as symbols defined by the language quantities can be represented by constructs
or concepts in the XML document. In many cases such quantities are assigned by an <Assign>
element. To ensure type consistency we must understand the type of the quantity on its left-hand side.

Element Type

PopulationParameter real

FixedEffect real

GeneralCovariate real

GaussianModel/RandomEffects real

RandomVariable1 real

RandomVariable2 real

CorrelationCoefficient real

Covariance real

DerivativeVariable/IndependentVariable real

InitialCondition real

ObservationModel/General real

ObservationModel/Standard/Output real

ErrorModel real

RandomError real

DoseAmount real

SteadyState/EndTime real

SteadyState/Interval real

DosingTimes real

continues on next page

240



12.5. Common Constructs

continued from previous page

Element Type

Duration real

Rate real

SimulationStep/Observations/Continuous real

Property real, int, string, boolean or array

Table 12.6: In common with other computational languages PharmML provides a mechanism to
define literal values. In all cases these literals has a type.

Literal Type Example

Real real <Real>22.3</Real>

Int integer <Int>22</Int>

String string <String>Hel lo</String>

ID id <Id>hel10</Id>

True boolean <True/>

False boolean <False/>

12.5 Common Constructs

12.5.1 Assignment
An assignment operation evaluates an expression, that may be a literal value, a reference to a sym- 5

bols or a mathematical equation. It then associates that expression with a symbol, such as variable,
parameter or covariate, or with an element in the XML document. An assignment is indicated by the
<Assign> element. The following rules apply:

S13 No circular assignment for non-derivative symbols A circular assignment occurs if a symbol
is initialised with an expression that when traced through the definition of each symbol in the 10

expression ends back where it started. This generally prohibited, but permitted if the symbol
being initialised is of derivative type. See section 6.3.2 for a more detailed description.

S14 A symbol can be assigned to only once. See section 6.3.2.

S15 Both sides of an assignment must have the same type. This means that the expression (the right-
hand side of the assignment) must evaluate to have a type that is identical to that of the symbol 15

or element it is to be associated with (the left-hand side).

12.5.2 Mapping to a Dataset
Elements map the symbol or model to a column in the <DataSet> using the <ColumnRef> ele-
ment. This gives us the following rules:

S16 A column reference must always to resolve to a column in its associated dataset. The associated 20

dataset is clear from the content of reference in the XML Schema structure. To resolve correctly
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12.5. Common Constructs

the value columnIdRef attribute must be identical to that of the columnId attribute in
Column definition of dataset.

S17 A mapping between a symbol or object to a column in a dataset must be type consistent. By this
we mean that the type of the object or element (defined in the table 12.7) must be the same as
the type specified in the column definition of the dataset. 5

Table 12.7: There are a number of mapping constructs in PharmML that assign the values in the
column of a dataset to symbols in the model or objects, for example to instantiate the trial design. In
some cases the symbol or object mapped to is implied by the mapping element, in other cases this is
explicitly defined with a <SymbRef> or <OidRef> element.

Column
Mapping Element Type Target of Mapping Notes

Population/IndividualMapping id Defines the id of the mapping.
ArmMapping id Arm
CovariateMapping id ModelDefinition/Covariate if categorical covariate
CovariateMapping real ModelDefinition/Covariate if continuous covariate
DemographicMapping scalar Demographic
IVDependentMapping table
IndependentVariableMapping real IndependentVariable
EpochMapping id Epoch
IndividualRef id Must map to an id found in an

instantiated Population.
IndividualDosing/DoseAmount real DosingRegimen/*/DoseAmount
IndividualDosing/DosingTime real DosingRegimen/*/DoseAmount
IndividualDosing/Rate real Infusion/Rate
IndividualDosing/Duration real Infusion/Duration
IndividualDosing/SSEndTime real SteadyState/EndTime
IndividualDosing/SSPeriod real SteadyState/Interval
ObjectiveDataSet/IndividualMapping id Must map to an id found in an

instantiated Population.
VariableMapping real Variable | DerivativeVariable

12.5.3 Array Literal Types
Symbols of array type cannot be define in PharmML, but there are cases where it is useful to define
an array of values, for example when defining a set of dosing times. PharmML provides two ways
to do this. The <Sequence> element specifies a uniform sequence of numerical values and the 10

<Vector> defines an ordered list of scalar values. Their usage is governed by the following rules.

C1 Sequence element validation rules.

1. Step size cannot be 0.

2. Steps greater than 0 implies that Begin must be greater than or equal to End.

3. Steps les than 0 implies that Begin must be less than or equal to End. 15

4. Repetitions must be greater than or equal to zero.
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12.6. Dataset

5. The type of the sequence must be consistent. Types may be promoted to maintain type
consistency. For example if the value of the step size is real type and the begin and end
elements have integer values then all will be promoted to a real type and the construct will
generate sequence of real numbers.

C2 Vector validation rules. 5

1. It must contain values that are type consistent. Types may be promoted to main type
consistency, in which case all values in the vector will be of the promoted type.

2. The order of elements in the vector are significant. Values can be repeated and the values
are not sorted in any way.

12.6 Dataset 10

The dataset defines a table of data. It is described in some detail in section 6.6.

DS1 Columns are ordered. The order is specified by the columnNum attribute.

DS2 Columns must be numbered sequentially from 1, with no gaps in the sequence.

DS3 Each dataset must have one or more columns assigned a s a unique key. If more than 1 column
then the combination of column values together defines the key. 15

DS4 Rows with a identical key values are forbidden. The rows in the dataset must be unique with
respect its unique key.

DS5 Key columns cannot define a nested table.

DS6 Each cell must contain a value that is type compatible with the column definition.

DS7 All cells in a column must have the same type. 20

DS8 Each row must define a cell for each column.

DS9 A cell that is in a column defining a nested table, must instantiate a nested table. If a column
defines a nested table then that data in the table must be described using an <Table> element.
The nested table is a properly constituted dataset and these consistency rules apply to it.

DS10 A dataset has a unique key. The keys of each dataset used in PharmML are defined in table 12.8. 25

Table 12.8: Unique keys for datasets used in PharmML.

Parent Element Nesting Element Key

Population N/A IndividualTemplate/IndividualMapping

continues on next page
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continued from previous page

Parent Element Nesting Element Key

Population IVDependentMapping IndependentVariableMapping or EpochMapping
IndividualDosing N/A IndividualRef and DosingTime
ObjectiveDataSet N/A ObjectiveDataSet/IndividualMapping and VariableMappinga

ObjectiveDataSet/IndividualMapping and EpochMapping

aThe variable mapping must refer to the independent variable. The key here is individual ID and time.

12.7 Maths
As described in more detail in section 6.7 the definition of mathematical expressions in PharmML
relies on a combination of literal values, symbol references, and binary and unary operators. The
operands of the operators needs more detailed definition. 5

12.7.1 Numerical Operators
T1 The operands of the binary numerical operators have specified semantics. The semantics are

defined in table 12.9.

T2 The operands of the unary numerical operators have specified semantics. The semantics are
defined in table 12.10. 10

T3 All numerical operators take one or more operands of type real and return a result of type real.

Table 12.9: Numerical binary operator semantics

Operator Definition Operand 1 Operand 2

plus Addition: a+ b a b

minus Subtraction: a− b a b

times Multiplication: a× b a b

divide Division: a/b a b

power Power: xy base (x) exponent (y)

root Root: y
√
x radicand (x) degree (y)

logx Logarithm: logy(x) power (x) base (y)

Table 12.10: Numerical unary operator semantics

Operator Definition

continues on next page
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continued from previous page

Operator Definition

exp Exponential function ex

log Natural logarithm: log(x)

minus Negation: −x
factorial Factorial: x!

sin Sine function: sin(x)

cos Cosine function: cos(x)

tan Tangent function: tan(x)

sec Secant function: sec(x)

csc Cosecant function: csc(x)

cot Cotangent function: cot(x)

sinh Hyperbolic sine function: sinh(x)

cosh Hyperbolic cosine function: cosh(x)

tanh Hyperbolic tangent function: tanh(x)

sech Hyperbolic secant function: sech(x)

csch Hyperbolic cosecant function: csch(x)

coth Hyperbolic cotangent function: coth(x)

arcsin Inverse Sine function: arcsin(x)

arccos Inverse Cosine function: arccos(x)

arctan Inverse Tangent function: arctan(x)

arcsec Inverse Secant function: arcsec(x)

arccsc Inverse Cosecant function: arccsc(x)

arccot Inverse Cotangent function: arccot(x)

arcsinh Inverse Hyperbolic sine function: arcsinh(x)

arccosh Inverse Hyperbolic cosine function: arccosh(x)

arctanh Inverse Hyperbolic tangent function: arctanh(x)

arcsech Inverse Hyperbolic secant function: arcsech(x)

arccsch Inverse Hyperbolic cosecant function: arccsch(x)

arccoth Inverse Hyperbolic cotangent function: arccoth(x)

continues on next page
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continued from previous page

Operator Definition

floor Floor: rounds down (towards −∞) to the nearest integer.

ceiling Ceiling: rounds up (towards +∞) to the nearest integer.

abs Absolute value: |x|
logistic Logistic function: f(x) = 1

1+e−x

logit Inverse of the logistic function: logit(x)

probit Probit function: probit(x)

12.7.2 Logical Operator
T4 The operands of the binary logical operators have specified semantics. The semantics are defined

in table 12.11.

T5 The operands of the unary logical operators have specified semantics. The semantics are defined 5

in table 12.12.

T6 The logical binary operators take operands of a specified type. The types are defined in ta-
ble 12.11.

T7 The logical unary operators take operands of a specified type. The types are defined in ta-
ble 12.12. 10

T8 All the logical operators return a result of type boolean.

Table 12.11: Logical binary operator semantics and expected types.

Operator Definition Operand 1 Operand 2

lt < real real

leq ≤ real real

gt > real real

geq ≥ real real

eq = real real

= boolean boolean

neq 6= real real

continues on next page
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continued from previous page

Operator Definition Operand 1 Operand 2

6= boolean boolean

and Boolean AND boolean boolean

or Boolean OR boolean boolean

xor Boolean XOR boolean boolean

Logical Unary Operators

Table 12.12: Logical unary operator semantics

Operator Definition Operand

isDefined Test if a value is Not NULL any scalar type

not Boolean NOT boolean

12.7.3 Constants
T9 All mathematical constants have type real. 5

T10 The constants have specified semantics. The semantics are defined in table 12.13.

Table 12.13: Numerical constant semantics

Constant Definition

notanumber Corresponds to the IEEE NaNa.

pi Pi: π

exponentiale Eulers number: e

infinity Infinity: ∞

aSee http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935

12.8 Global rules
These rules apply to the whole PharmML document.

G1 The model is assumed to be initialised at t = 0 t is the symbol for the independent variable — 10

defined in the <IndependentVariable> element. Because the model is not initialised it
follows that estimation and simulation steps with values of t < 0 are invalid.

G2 The default independent variable symbols id t This is the value used when no <IndependentVariable>
element is defined in a PharmML document.
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12.9. ModelDefinition

12.9 ModelDefinition
The following rules relate to the <ModelDefinition> element and its children.

M1 Only one uninitialised category permitted in a categorical covariates If one category is assigned
a value in the ModelDefinition then all but ast most one category must be assigned a value.

M2 Categories of a categorical covariate must equal 1 If all categories are assigned a value then they 5

must sum to 1. If one cat is unassigned then it has a probability of 1-sum of all other categories.

M4 Correctly defined covariance matrix If both random effects being correlated are Normal then
we can calculate the diagonal of the covariance. We only need to calculate the off-diagonal
elements. Otherwise the full upper triangular matrix must be defined.

M5 All Variability Levels must be used All variability levels in the model definition must be used by 10

at least one random effect in the model.

M6 Random effect correlations must be unique A correlation between identical random effects at the
same variability level of the model is forbidden.

M7 The variability levels within a particular type must be defined as a list. Each variability level can
only have a maximum of one child level and one parent level. Variability levels that belong to 15

models with different types (specified by the type attribute) cannot be linked.

12.10 Trial Design
D1 Demographic values of same type. The values of a demographic, specified by the <Demogra-

phic> element, must all have the same type.

D2 Dosing cannot start before the model is initialised. This means that all dosing times must start at 20

or after the initial time of the model.

D3 IV dependent attributes cannot begin before the model is initialised. For example a time depen-
dent covariate cannot occur before the initial time of the model.

D4 Single dose amount and multiple dosing times permitted. In a dosing regiment, if a single dose
amount is specified with multiple doses then this indicates that the same dose amount should 25

be administered at each dosing time.

D5 Multiple dose amount and multiple dosing times permitted. In a dosing regiment, if a multiple
doses amount is specified with multiple doses then each dose amount is administered at the
corresponding dosing time. The order of the amounts and times is significant so the first amount
is administered at the first time and so on. Note that the vectors of amount and time must be 30

exactly the same length.

D6 More than one dosing time implies multiple dosing.

D7 Dosing times cannot be less than zero. See rule G1.

D6 Epoch periods cannot be less than zero. See rule G1.

D8 An Epoch period must progress in time. The end of an epoch must be equal to or after its begin- 35

ning. It must also have both a start and end time.
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D9 A trial structure must be complete. A <Structure> element must contain at least one each of
Epoch, Arm, Cell, Segment and Activity.

D10 An Observation Group period must progress in time. The end of an observation group must be
after its beginning. It must also have a duration greater than zero. It must also have both a start
and end time. 5

D11 Dosing times relative to epoch. Dosing times are relative to the start time of the epoch to which
they are assigned.

D12 If dosing type is target then the dosing variable must be a derivative variable.

D13 If dosing type is dose then the dosing variable must be a non-derivative variable.

D14 Multiple dosing of type target. If dosing is of type target then the dose is added to the 10

dosing variable at the dosing time.

D15 Multiple dosing of type dose. If dosing is of type dose then the structural model to which the
dose is applied must be algebraic. This structural model, C, must then be summed over each
dose and time-point to give the output variable, Csum , as follows:

Csum(t) =
n∑
i=1

C(Di, tDi
, t)

12.11 Modelling Step 15

L1 A trial design section must be defined if a simulation step is defined.

L2 A trial design section must be defined for an estimation step is defined.

L3 No uninitialised symbols All symbols such as variables, parameters, and covariates must be ini-
tialised. By initialised we mean that they must have an initial assignment (including an initial
condition) or an initial estimate defined. 20

L4 Times used in a modelling step cannot occur before the initial time of the model. In practise this
means that negative times are prohibited.
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APPENDIX A
PharmML Version 0.1.0

This appendix includes information about the previous version of PharmML. The language specifica-
tion evolves over time and involves many individuals who’s participation in the development of the 5

language also changes between releases. In this chapter we record those who contributed to version
0.1.0 of PharmML and provide information about what has changed.

A.1 Acknowledgements
Nothing is original. Steal from anywhere that resonates with inspiration or fuels your imagination.
Select only things to steal from that speak directly to your soul. If you do this, your work (and 10

theft) will be authentic. Authenticity is invaluable; originality is non-existent. And don’t bother
concealing your thievery – celebrate it if you feel like it. In any case, always remember what
Jean-Luc Godard said: "It’s not where you take things from – it’s where you take them to."
Jim Jarmusch

In developing PharmML we are indebted to the many individuals within the DDMoRe project and 15

other colleagues who contributed to the development of the standard and this specification document
that describes it. While we have had help and assistance from many people we would like to highlight
the contributions of some key individuals. Marc Lavielle has helped us by the clarity with which
he has described the mathematical underpinnings of the type of pharmacometric model described
here. He has patiently answered our many questions and has always been quick to review documents. 20

Mats Karlsson and Lutz Harnisch have provided us with support throughout the project and Lutz in
particular has been an active and challenging contributor at our workshops. Andrea Mari has provided
us with many helpful suggestions for the design of PharmML and his ideas about modularity have
influenced the design you see here. France Mentré has been a valuable presence during workshops
and has provided a calm reason which has helped make the PharmML workshops very productive. 25

Emmanuelle Comets assisted us greatly in the development if the variability model used in PharmML.
Her deep insight made something that was opaque to us become very clear and simple. Nick Holford
provided advice and feedback on multiple occasions and countless use cases indispensable in the
process of the language development. Mike Smith has been an enthusiastic contributor to this work
and has always been keen to help us during workshops. His help teaching us NONMEM and helping 30

understand real-world modelling scenarios has certainly informed this work. Paolo Magni provided
expertise in many aspects of population modelling and statistics and Roberto Bizzotto consulted us
on various occasions regarding NMTRAN. Duncan Edwards provided a number of excellent ideas
on the trial design model. And finally Andy Hooker, who was very helpful in the early stages of the
development of PharmML, but was unavailable over the past few months. His sharp eye spotted some 35

limitations in early prototypes and so saved us from ourselves!
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A.2. Changes from version 0.1.0 to 0.2.0

Besides these people there are have many more people who have attended workshops and/or
provided us with input otherwise. They are: Chris Franklin, Eric Blaudez, Ivan Matthews, Jonathan
Chard, Joost N. Kok, Kaelig Chatel, Mateusz Rogalski, Mihai Glonţ, Natallia Kokash, Richard Kaye,
Simon Thomas, Nadia Terranova, Vijayalakshmi Chelliah.

Some of our colleagues at EMBL-EBI have been helpful with the technical aspects of the standard. 5

Sarah Keating’s work on SBML and libSBML provided us with “the voice of experience”. Camille
Laibe and Sarala Wimalaratne helped us develop our annotation strategy for PharmML. Pierre Grenon
helped us develop the structural model ontology and also helped us develop the standard library
approach described here. Finally SM and MS would like to thank Henning Hermjackob for his support
during recent re-organisations at the EBI and in helping us attend important workshops and meeting 10

vital for our work.
We would like to thank the administrative team at Interface Europe for their help in organising

workshops and the smooth running of the DDMoRe project. And not least Wendy Aartsen of Leiden
University for her continued support and good humor in organising meetings, preparing reports and
generally shielding us from administration and helping us do science! 15

The DDMoRe project and consequently this work, is funded by the Innovative Medicines Initiative
(IMI), a large-scale public-private partnership between the European Union and the pharmaceutical
industry association EFPIA. We would like to gratefully acknowledge their support.

A.2 Changes from version 0.1.0 to 0.2.0

Change Description

Refactored XML design Replaced many attributes with elements and increased reused
of global elements - in particular from the CommonTypes
schema.

Introduced object identifiers (OIDs).

Renamed symbol referencing element to
SymbRef

Refactored variable definitions Derivatives now defined with the initial conditions. Improved
definition of initial conditions in specification.

Redesigned database. Now defines data in XML. Has nested tables and cannot refer
to external files.

Introduced integer and real types Before there was only a scalar type, now we make a distinc-
tion.

Complete redesign of Trial Design defini-
tion.

Now define the trial design explicitly. Cannot do it through
data. The trial structure borrows from CDISC.

Simplified the estimation step. It now only maps objective data to the model and describes
the estimation operations.

continues on next page

20
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A.3. Changes from version 0.2.0 to 0.2.1

continued from previous page

Change Description

Simplified the simulation step Simulations cannot now driven by a datafile and the definition
of repetitions is removed. This feature may be reintroduced
in the future.

Extended the definition of the Parameter
Model

Implicit parameter models are now supported as is a Gaussian
parameter model with a non-linear covariate model.

Extended the residual error model Can support much more complex error models including
those commonly defined in NONMEM.

Removed external inclusions. To simplify this version of the language all imports of exter-
nal resources have been removed. This simplifies validation
and the aim is to reintroduce this later.

Added element identifier To facilitate referencing by external resources all elements
can have an optional id attribute.

Pre-release UncertML 3.0 incorporated. Probability distributions are now defined using an externally
maintained resource.

A.3 Changes from version 0.2.0 to 0.2.1

Change Description

Fixes to specification Fixed errors and typos in the text.

Expanded examples Added a steady state example.

Additional schema documentation. Expanded the schema documentation.

Minor schema refactoring. Refactored the trialDesign.xsd to replace anonymous types with
complex types and so comply with our design guidelines.

Added the id type. We realised when writing version 0.2.0 that we needed a type for
identifiers. This made it to the validation section but was omit-
ted in the XML Schema definition and the examples. This is now
rectified.
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