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DDMoRe 

www.ddmore.eu 
 
Report bugs, problems with MDL, ddmore R package, MDL-IDE, Integration Framework (SEE) 
http://www.ddmore.eu/forum  
 
FAQ about DDMoRe 
http://www.ddmore.eu/faq  
 
Download MDL-IDE software: 
https://sourceforge.net/projects/ddmore/files/install/SEE/  
 
PharmML 
http://www.pharmml.org/ 
 

Changes from Public Beta release – 11 Dec 2015 
Changes have been made to the MDL since the Public Beta release on 11 Dec 2015. The changes are 
reflected in this documentation by striking out comments that are not applicable any more, and by 
adding new syntax in red, boxed-out text, as seen here. 

The primary focus of MDL in this release is translation to valid PharmML, rather than conversion to 
target software. The previous release was primarily concerned with demonstrating interoperability 
across key software targets. In this version of MDL there may be MDL features which are not supported 
in conversion from PharmML to certain target software, but which are valid for model description and 
which generate valid PharmML. The aim is to widen the scope of models which can be encoded in MDL 
and generate PharmML for uploading to the DDMoRe repository and for future interoperability. 
Translation of these models to target software will follow with updates to the interoperability 
framework converters. 

The changes to MDL since draft 7 (v0.7) enable integration of the Prior and Design Objects and 
improved validation of MDL giving increased confidence in generation of valid PharmML. In order to 
facilitate this, certain changes to syntax have been made that are NOT backwards compatible. This is 
regrettable since it means that existing models required changes. We do not make these changes 
lightly.  

Key changes which break backwards compatibility: 

- DECLARED_VARIABLES block must now have type assigned to variables to enable validation of variable 
types between MDL objects, particularly Design Object variables. 

- Correlations and covariances between parameters are now specified in the Model Object and must be 
named parameters. This is to facilitate specification of priors on these parameters. 

- In the Parameter Object, user should not specify the type of variability definition (type is sd, type 
is var, type is corr, type is cov) for VARIABILITY parameters.The variability, covariance or 
correlation type is specified and used in the RANDOM_VARIABLE_DEFINITION block where these 
parameters are defined. 

- Left hand side transformations for INDIVIDUAL_PARAMETERS are no longer valid. These were felt to 
be confusing.  

- Right hand side functions for INDIVIDUAL_PARAMETER and OBSERVATION definitions are now list 
definitions with the matching type to the function. This, combined with conditional statements allows 
more flexibility in parameter and observation definitions. 

- Non-continuous outcomes (binary, count, categorical) must be defined as 
RANDOM_VARIABLE_DEFINITION(level=DV){ … } and then the variable defined assigned as an anonymous 
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list in the OBSERVATION block. This is to ensure that outcome variables are always defined with 
variability at the DV level. (This is implicit in continuous outcomes due to definition of residual error at 
the DV level). 

- Arbitrary equations defining the outcome variable are not allowed in the OBSERVATION block. Use 
“type is userDefined” instead. 

Additional features in the new version: 

- Prior Object definition 

- Design Object definition 

- Support for ProbOnto distributions in RANDOM_VARIABLE_DEFINITION. 

- Support for target software specific Task Properties object. 

- Support for DATA_DERIVED_VARIABLES where dose amounts and dose times can be derived from data 
columns which are being used otherwise as “use is amt” or “use is idv”. 

- Support for vectors and matrices 

- Support for conditional assignment to lists. 

- Support for definition of parameters in RANDOM_VARIABLE_DEFINITION i.e. definition of CL ~ 
Normal(mean=POP_CL, sd=PPV_CL) for subsequent use in INDIVIDUAL_PARAMETERS. This combined 
with support for ProbOnto definitions allows the user to define multivariate distributions of 
parameters, mixture distributions etc. 

- Support for combination of compartment definitions with differential equations. 

- Support for model input variables passed from the Data Object with “use is variable”. This 
equates to “regressor” type inputs to models. 

- Support for userDefined specification of the relationship between model predictions and residual 
error random variables in the OBSERVATION block. 
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1 Introduction 
The Model Description Language (MDL) and the Pharmacometrics Markup Language standard 
(PharmML1) have been developed to convey information about pharmacometrics models and tasks. The 
goal of each language is to do this consistently between modellers (using MDL) and between software 
target tools (using PharmML).  

MDL is a human writeable and human readable language designed to describe pharmacometric models. 
It is intended to be largely agnostic about the choice of target tool. MDL should facilitate clear and 
unambiguous definition of models, with information conveyed in a consistent manner to the PharmML 
representation and onwards to the target software specific code.  

An important concept in the MDL is the separation of data, parameter, model and task descriptions into 
independent objects rather than combining these in a single file (such as in NONMEM2). This supports 
reuse and interchange of the objects which define each component of the model and related modelling 
task. This independence means that model objects stored in the DDMoRe Model Repository may be 
combined with user objects outside the repository e.g. a Model Object, Parameter Object and a Task 
Properties Object may be taken from the Repository and combined with user defined Data Object. This 
may be useful when a user wishes to assess whether a library model is predictive for their dataset, as a 
preliminary step before further model refinement. 

These facets (target software agnostic code + independence of MDL objects) mean that model 
definition using MDL is more verbose than code written specifically for any specific target tool. 
However the principle concept of MDL is that model code is written once and used in many different 
tools. For estimation, simulation, optimal design. So time spent writing code initially is saved in the 
longer term since MDL eliminates the need to recode models for different tasks and different software 
tools. 

1.1 Why write a new language? 
A key deliverable of the DDMoRe project is a unified Model Description Language (MDL), based on 
established principles, designed to be easily read and written. It is designed to facilitate easy uptake 
by modellers already experienced in other model definition languages, and will allow the definition of 
any model-based analysis. 

Several languages have been created to support M&S activities. Examples of widely used languages are 
NONMEM (NMTRAN), Monolix (MLXTRAN)3, BUGS4 and MATLAB5. However, none are shared, creating 
difficulties for comparison and integration. Many tools have overlapping functionality, and so the 
choice of one tool over another is driven largely by user preference, availability of tools, experience of 
the analyst and whether there is sufficient experience readily available to the analyst to provide 
support and advice on model building techniques specific for the tool in question. Considerable effort 
is currently required when moving the model from one software tool to another, as models always have 
to be recoded in the target software tool language, by hand. A significant need exists to rectify this 
situation, which DDMoRe is addressing. 

1 Swat, MJ et al (2015) Pharmacometrics Markup Language (PharmML): Opening New Perspectives for 
Model Exchange in Drug Development. CPT: Pharmacometrics & Systems Pharmacology, 4: 316–319. 
doi: 10.1002/psp4.57 http://www.pharmml.org/ 
2 Beal S, Sheiner LB, Boeckmann A, & Bauer RJ, NONMEM User's  
Guides. (1989-2009), Icon Development Solutions, Ellicott City, MD, USA,  
2009. 
3 Monolix, Lixoft, Antony, France and Inria, Orsay, France. http://www.lixoft.eu/   
4 Lunn DJ, Thomas A, Best N & Spiegelhalter D (2000) WinBUGS -- a Bayesian modelling framework: 
concepts, structure, and extensibility. Statistics and Computing, 10:325--337 
5 MATLAB, The MathWorks Inc., Natick, MA http://nl.mathworks.com/products/matlab  
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Another common situation is using models which were developed by a third party using software that 
we do not have available. In that case we must try to re-encode the model before we can start using it 
or developing it further. This can be difficult because we need to ensure that we have all the 
information to construct the model in a different language. Do we have all the necessary files, settings, 
subroutines, functions available to us? Are the assumptions used in the model adequately annotated or 
described in supporting documentation? Do we have understanding of any tool-specific “tricks” and 
techniques that allow the model to work in the original software?  

MDL provides a user interface to describe models using a common language standard. The aim is that 
the user writes the model (Model Object) once, in MDL, then uses this model in the tools they require 
(and have available) in order to complete their M&S tasks, without any tool specific recoding. This 
interoperability is a core deliverable of the DDMoRe project.6 

Additionally, MDL is intended as a standard for communication of models. An analyst who only uses one 
tool may wish to convey their model to a third party. MDL provides the means to describe the model in 
a way that is consistent and provides complete information about the model (without any reference to 
target tool specific code). MDL is designed to focus on describing WHAT the model conveys, rather than 
focussing on the HOW of implementation. This has an impact on the structure and features used in 
MDL, but it should aid clarity and reduce ambiguity. 

1.2 Integrated language standards 
As described above, MDL provides the user focused layer of model description. This facilitates user 
understanding and model sharing between analysts. 

PharmML provides the software interchange standard within DDMoRe to facilitate the transfer of 
models between target tools by ensuring that all of the necessary information about the model is 
captured and can be translated automatically to any given target tool that has an appropriate PharmML 
converter. 

ProbOnto7 is an ontology and knowledge base that has been developed to describe probability 
distributions in a consistent and unambiguous way, as well as defining their functions, characteristics 
and the relationships between distributions. 

The Standard Output object (SO) standard provides a consistent format for M & S results and outputs. 
Its availability as an object within R provides interchange and integration between existing R packages 
for M & S tasks within the DDMoRe infrastructure. 

MDL, PharmML and the SO are the basis for interoperability which is one of the core deliverables of the 
DDMoRe project. 

1.3 MDL in use 
Very few models can be retrieved from a repository or library, be fit to any given set of data and 
pronounced valid for inference without further assessment or changes. Thus, the process of fitting 
models to data, assessing the fit through model diagnostics is an iterative process, culminating in 
selecting the model which is parsimonious and fit for its purpose in the inferential step – decision 
making, making predictions for future populations of interest, selecting dose or dosage regimen etc. 
The combination of features in MDL and the “ddmore” R package facilitates that process. MDL’s 
structure makes changes to data, models, parameters, tasks transparent – making it clear exactly 
which elements are changing and which are constant across steps. Using an R script to define M & S 

6 Harnisch L, Matthews I, Chard J and Karlsson MO (2013), Drug and Disease Model Resources: A 
Consortium to Create Standards and Tools to Enhance Model-Based Drug Development. CPT: 
Pharmacometrics & Systems Pharmacology, 2: 1–3. doi: 10.1038/psp.2013.10 
7 Swat, MJ, Grenon, P, Wimalaratne, S. ProbOnto – Ontology and Knowledge Base of Probability 
Distributions. Bioinformatics (2016). doi: 10.1093/bioinformatics/btw170 
 https://sites.google.com/site/probonto/ 
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task workflow facilitates an unbroken workflow for a given model and dataset, from exploratory 
analysis, estimation, diagnostics and simulation across a variety of tools without having to recode the 
model. 

1.4 MDL components and structure 
The MDL objects are typically defined in a file with extension .mdl.  Models may also be stored and 
retrieved from the DDMoRe Repository either as MDL or PharmML. The key concept in MDL is that these 
objects can be passed to any target software for use in modelling tasks: estimation, model diagnostics 
and evaluation, simulation, optimal design.  

An overview of the currently specified MDL objects is shown in Figure 1. 
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Figure 1 MDL Objects 

The MDL is used to specify the inputs and the model used in an M & S task. It does this with four MDL 
objects defining the model, parameters, data and task properties. An additional object is used to 
specify the group of objects required for a given task which is known as the Modelling Objects Group 
(MOG). 

The Model Object is the core element of the MDL and Modelling Objects Group (MOG). It defines the 
mathematical and statistical properties of the model by defining the structural, covariate, variability 
and observation models. While other objects may change depending on task, the Model Object will 
typically be unchanged for tasks associated with that model e.g. data visualisation, parameter 
estimation, model diagnostics, prediction, simulation or optimal design. 

The Data Object describes the source of the data and the attributes of each of the data variables. It 
allows the user to define the inputs to the model and how these inputs and observed data are to be 
used in definition of the model. It may also be used with data visualisation tools without a Model 
Object. 

The Design Object defines the design parameters – interventions, sampling schedules, covariate 
distributions, populations, study arms - for optimal design or design evaluation, and also for simulation. 
The Design Object replaces the Data Object in these cases. 

The Parameter Object provides values for structural and variability parameters, including bounds on 
the parameter values for use in estimation. These can be fixed or initial values with associated 
constraints for parameter estimation or an instantiation of model parameters for use in making 
predictions or simulations. 

The Prior Object defines prior distributions and values of the parameters when performing Bayesian 
estimation of parameters. It replaces the Parameter Object in this case. 

The Task Properties Object contains settings specific to the task which will be passed on to the target 
software e.g. when estimating parameters it will define the estimation algorithm and associated 
settings for the algorithm. 

It is through combination of the Model Object with other objects that we instantiate the model - 
linking inputs and observations from the Data or Design Object, parameter values from the Parameter 
or Design Object and information about the task settings in the Task Properties Object with the Model 
Object to form a Modelling Objects Group (MOG) ready for executing a modelling, simulation or 
optimal design task.  

Objects are defined and stored in a MDL file with extension .mdl. It is possible to define more than one 
Model, Data, Design, Parameter Prior and Task Properties Object within a single MDL file. The MOG 
Object defines specific individual objects within an MDL file for a given task. Most commonly there will 
be one object of each type of information in a MDL file used for a task. 

1.4.1 Independence of MDL objects 
Typically, existing software has used control files that bring the elements in MDL (data, parameters, 
model and task definitions) together in control, model or project file(s). What is new in the MDL is the 
concept that the elements of the Modelling Object Group (data, parameters, model, task properties) 
are distinct and independent, allowing the user to combine new data and parameters applicable to 
their situation with an existing model. Within a M&S task workflow it is easy to see how the core Model 
Object remains unchanged between estimating parameters, performing model diagnostics, making 
predictions and simulation future outcomes. The fact that the elements of the MDL are exchangeable 
also makes it easier to see exactly what elements change between these M & S workflow steps. 

Independence of objects also means that the Model Object should be independent of the data and, as a 
consequence, more easy to read and interpret without needing to have the data to hand. Having an 
independent Task Properties Object means that the user may store their preferred settings for tasks 
and target software, suitable for reuse across models and modelling tasks, to facilitate comparison 
between target software and to ensure reproducibility of results. 
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Independence of the MDL objects entails defining the contents of each object in isolation. Variables 
from another MDL object must be declared in the object in which they are referred to e.g. if we need 
to refer to the Model Object OBSERVATION block variable Y in the Data Object DATA_INPUT_VARIABLES 
block then we must declare a matching variable Y in the Data Object. 

1.5 Task Execution with the ddmore R package 
To perform tasks with the model, the user will need to use the ddmore R package. This package 
contains functions for executing commonly used tasks on the MDL file. The R functions can read and 
parse MDL objects from a MDL file to create R object representations of MDL, which can then be 
manipulated within R. These representations of the MDL objects can be combined to form a MOG and 
then written back to a new MDL file. This means that an MDL file can contain the core Model Object 
and associated Data, Design, Parameter, Prior and multiple Task Properties Objects which can then be 
combined into MOGs ready to perform specific tasks. This aids reproducibility since with one MDL file, 
data set and associated R script the user can perform multiple steps in a pharmacometric workflow for 
a given model.  

Estimation using the estimate function takes as input the user specified MDL file or a MOG object 
defined within R. Additional functions allow the user to call modelling tools such as Perl speaks 
NONMEM (PsN)8. Each task produces a Standard Output (SO) object in R which may be the final output 
or used in subsequent tasks using functions from the ddmore R package or other R packages and 
commands.  

Using R as the language for defining the workflow for M & S tasks with MDL objects allows analysts to 
tap into existing R packages for performing those tasks. The ddmore package R functions are provided 
to read and extract information from the SO object and to convert between this, Xpose9, mlxR10, 
PFIM11 and PopED12 R packages. The ddmore R package will extend and enhance what the analyst can 
do with existing R packages through the common standards that the DDMoRe project brings. 

Task properties and settings defined in the Task Properties Object of MDL are distinct from arguments 
to the R functions for executing tasks. The Task Properties Object provides information to the 
appropriate target software about the particular settings and options required for a given task. The R 
function arguments are command line settings or options which are employed when invoking the target 
software. The Task Properties Object may define the estimation algorithm and associated settings for 
NONMEM, but the command line options for PsN provided from the ddmore functions govern how 
NONMEM should be called by PsN. For example, Task Properties specifies an ESTIMATION block with 
estimation method set to FOCEI, while the arguments of the bootstrap.PsN function in R allow the user 
to set bootstrap options from PsN such as “threads”, “stratify_on” etc. (See PsN bootstrap 
documentation for more details on PsN bootstrap options). 

8 Lindbom L, Ribbing J, Jonsson EN, Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related 
programming, Computer Methods and Programs in Biomedicine, Volume 75, Issue 2, August 2004, Pages 
85-94 
9 Jonsson EN & Karlsson MO (1999) Xpose--an S-PLUS based population  
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1.6 The MDL Integrated Development Environment 
The MDL Integrated Development Environment (MDL-IDE) is a software platform for writing models with 
MDL. The MDL editor within the MDL-IDE implements the “rules” of the language through recognising 
MDL constructs and having a defined grammar and it ensures that MDL models are syntactically correct 
and result in valid PharmML. The MDL-IDE also provides additional tools – giving access to an R editor 
and console – so that the user can not only develop models, but execute tasks with them and define 
task workflow through R scripts. 

The MDL-IDE gives warnings when the user writes MDL that will result in valid PharmML, but where MDL 
constructs are used that may not be interoperable. It gives errors when the user writes code that 
breaks MDL grammar rules and that will result in invalid PharmML. 

1.7 On interoperability 
A key goal of the DDMoRe project is to have an intoperability framework in which models are written in 
a consistent language, translated to PharmML and from there converted to target software code. 
Before the DDMoRe project no existing language standard existed across target software used in 
pharmacometrics modelling, and while the underlying models could be expressed consistently in 
mathematical and statistical terms, the implementation of any given model varied by tool and by user 
according to their experience with a given target software tool. 

There is some flexibility within MDL around how the user can express the mathematical and statistical 
models. Having flexibility allows the user to encode models quickly in a common language (MDL) which 
can then be shared with others and mutually understood. This flexibility also facilitates encoding in a 
given target when that language construct does not have a parallel in other tools. However, we 
STRONGLY encourage the user to encode the majority of models in a way that will facilitate 
interoperability. There are MDL constructs that facilitate interoperability – these generally appear as 
built-in functions which translate to specific constructs in PharmML and the target software. These 
constructs cover many typical models and are designed to allow the user to generate code quickly and 
have high confidence that it will be interoperable across tools. 

The Model Description Language Interactive Development Environment (MDL-IDE) should assist the user 
in ensuring that the models encoded are valid MDL (and as a consequence, also valid PharmML). Not all 
models will result in code which can be readily converted to all target tools.  

These interoperability constructs will be highlighted in the subsequent sections, but users should pay 
particular attention to sections on the use of GROUP_VARIABLES,  INDIVIDUAL_VARIABLES and the 
MODEL_PREDICTION. 

1.8 Evolution of MDL 
Development of MDL has been led and influenced by domain experts in M & S, computer language 
development, system interchange language development (markup languages), and developers of 
software systems. In developing MDL we have looked at features in established M&S languages, as 
mentioned above, and aimed to pick out features that will facilitate interoperability, while retaining 
the flexibility in these languages to describe complex models. The current MDL implementation 
focusses on interoperability in order to demonstrate that capability. The language standards in MDL, 
PharmML and SO are the key to eliminating the recoding necessary to pass models between tools used 
for different M&S tasks. 

The MDL language attempts to balance consistency and clarity in definitions, with interoperability and 
flexibility in translation to PharmML and on to target software. It will continue to evolve to incorporate 
new features, extending the range of models that can be expressed using the language.  

Trying to define a language that maps to all possible models as defined in all possible tools is virtually 
impossible. However, having a well-defined software interchange standard (PharmML) and mapping 
MDL into PharmML allows us to focus on describing model features with one target in mind – PharmML. 
The two languages – MDL and PharmML - have evolved during the course of the project. The aim is that 
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these two languages should go “hand in hand” – that MDL should convey in an accessible, user (analyst) 
friendly way, the models that can be encoded in PharmML. 

Converter tools then interpret the PharmML rather than the MDL for each software target. Testing this 
conversion and comparing output downstream allows us to check that the translation results in 
comparable models.  

Future pharmacometrics tools could provide converters to import and export PharmML or use MDL 
directly as the model specification language. It is our hope that the DDMoRe standards would facilitate 
more consistency, better understanding of models as well as interoperability between modelling and 
simulation tools in the future. 
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2 The Data Object 
The Data Object defines the attributes of the source data file and defines how values in the data 
source are to be used in the context of a given Model Object.  The Data Object is independent of other 
blocks, including the Model Object. It must ultimately provide appropriate information to the Model 
Object, but as with other Objects in MDL it must be self-contained, so variables from other Objects 
which are referenced must be declared in the DECLARED_VARIABLES block. 

The following blocks are defined within the Data Object: DECLARED_VARIABLES, 
DATA_INPUT_VARIABLES, SOURCE, DATA_DERIVED_VARIABLES, FUNCTIONS. 

2.1 Subsetting data for analysis 
For quality assurance and audit purposes it is imperative that there be a clear and traceable path 
between the original data source and data used in analysis. This is normally achieved in one of two 
ways: through having data manipulation steps performed in a scriptable language to create the dataset 
for use in analysis, or through having the original data as the input to the analysis and using filtering 
and subsetting commands in the target analysis software code to define what records are used in the 
task.   

The “NONMEM” method for dealing with outliers and filtering data – commenting out data rows 
using a specific character as the first item on a data line or specifying conditions under which data 
is accepted or ignored – is not supported within MDL.  

We suggest that users use scriptable languages like R to subset, filter and manipulate data prior to 
analysis, write the data for analysis to file and then modify the MDL Data Object to reference the 
appropriate source file in the SOURCE block. This aids reproducibility since the data used in estimation 
will be equivalent across target software tools. If the “ignored” or “dropped” data is saved separately 
in a file or listing then it will also be possible to quickly and easily verify that the data used in analysis, 
when combined with the dropped data matches the original dataset.  

For legacy data and NMTRAN models, we recommend using the “ignored” function within the 
“metrumrg” R package (https://r-forge.r-project.org/projects/metrumrg/). This function reads a 
NONMEM control stream and creates a TRUE / FALSE logical flag for whether the records meet IGNORE 
and/or ACCEPT criteria specified in the NMTRAN code. This will allow the user to identify which data 
records have been dropped by NONMEM. Filtering on the original data based on this criteria will allow 
them to create a dataset ready for analysis with MDL. 

For example, if the NMTRAN control file had the following $DATA statement: 

$DATA mx2007.csv IGNORE=@  

 IGNORE ID.EQ.1 

 ACCEPT VISI.EQ.3 

This code means that any data rows which start with “@” are to be omitted, that the subject with ID 
== 1 should be omitted from analysis, and only VISI == 3 is to be included. 

Using the metrumrg function ignored, we have the following code which can be used within the R 
script. This assumes that the $DATA statements above are in a control file called “run1.ctl”: 

library(metrumrg) 

mx2007 <- read.csv("mx2007.csv", header=T) 

mx.dropped <- mx2007[ignored(ctlfile="run1.ctl"),] 

mx.kept <- mx2007[!ignored(ctlfile="run1.ctl"),] 
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This separates out the dropped records into the mx.dropped data frame, and the kept records into the 
data frame mx.kept. The user can then write mx.kept to a .csv file and use this as the file in the 
SOURCE block. 

2.2 DATA_INPUT_VARIABLES Block 
This block defines the columns in the dataset described in SOURCE block and how these map to model 
variables.  

• All columns of the data file defined in the SOURCE block must be defined in 
DATA_INPUT_VARIABLES. This aids clarity and readability. 

• In the current MDL , variables in the DATA_INPUT_VARIABLES block must be defined in the 
column order they appear in the SOURCE block data file. 

• In the current MDL, variable names in the DATA_INPUT_VARIABLES block must match the 
names in the header row of the data file named in the SOURCE block. For interoperability 
with Monolix the case of the names in the header row must match the case of the data 
variable in the DATA_INPUT_VARIABLES block. 

• DATA_INPUT_VARIABLES cannot have more than one use defined. 
• All DATA_INPUT_VARIABLES must have a use defined. 
• Columns in the data which are not required in the model should have “use is ignore”. 

The typical syntax for defining items in the DATA_INPUT_VARIABLES block is: 

<Variable name> : { use is < use type > } 

Define types for use type are: 

Use Defines 

id Individual identifier. Typically subject ID in clinical trials. Defines the 
indvidual level of parameter variability. 

idv Independent variable. Typically TIME. In the Model Object, the reserved 
variable T is used as the integrator variable in the specification of differential 
equations. 

amt Dose amount 

dv Dependent variable 

varLevel Defines a level of variability in the model. Not required for 
DATA_INPUT_VARIABLES with use is id or use is dv . Used to define all other 
variability levels such as interoccasion variability. 

covariate Covariate for use in definition of fixed effect variable 

catCov Categorical covariate for use in definition of fixed effect variables based on 
categories 

variable Defines any model input not covered by other types. Corresponds to the 
“regressor” variable type in Monolix. 

dvid Dependent variable identifier when there is more than one type of 
observation. 

evid Event identifier. This type is defined in MDL, but not yet implemented by 
converters in the current SEE. 

mdv Missing dependent variable 
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cmt Compartment identifier 

ss Steady State indicator 

ii Inter-dose interval i.e. time between repeated doses 

addl Number of additional doses in repeated dose administration 

rate Zero-order input rate 

ignore Ignores a data variable 

 

The use types correspond to those used by NONMEM and Monolix. varLevel corresponds to OCC in 
Monolix, catCov corresponds to CAT in Monolix. (NMTRAN does not have equivalent reserved words for 
these types of variables – their use is implicit in the implementation of the model). 

Use “use is covariate” and “use is catCov” for data variables that are to be used in “linear” 
definition of INDIVIDUAL_VARIABLES (see section 4.9). Note that covariates and categorical covaraites 
used in “linear” definitions within the INDIVIDUAL_VARIABLES block should not vary with time, 
although they may vary by occasion. 

Use “use is variable” for data variables that are to be used directly in the calculations within the 
MODEL_PREDICTION block – for example, individualised PK parameter predictions for use in a PD model. 
These may be time-varying covariates or inputs to the MODEL_PREDICTION equations. 

“use is variable” corresponds to the “regressor” variable type in Monolix. 

MDL does not have “reserved” names for variables in the Model Object other than the default for the 
independent variable T. The intended use for variables is defined via the “use is …” attribute as 
described above. The choice of names for DATA_INPUT_VARIABLES should be meaningful to the user 
and clear for any third party reading the code. 

However, within the current Standalone Execution Environment (SEE) interoperability framework, 
certain names for DATA_INPUT_VARIABLES are required to facilitate translation to NONMEM, 
Monolix and on to downstream R packages such as Xpose. It is expected that future versions will 
relax these constraints. The variables under constraint are AMT, DOSE, TIME and DV. See below for 
more information. 

2.2.1 Defining dose amount 
The dosing amount is defined through DATA_INPUT_VARIABLES with “use is amt”. It is assumed that 
when the column has a non-zero / non-missing value, this amount is assigned to the relevant Model 
Object dosing variable. 

The Model Object variables to which dose is assigned should be declared in the DECLARED_VARIABLES 
block and should have type ::dosingTarget. This applies equally when doses are assigned to differential 
equation variables (UseCase1), PK input compartments with “type is depot” or “type is direct” 
(UseCase4) or variables in analytical models (UseCase2). 

The syntax for defining the dose amount is: 

<Variable> : { use is amt, variable = <mdlObject variable> } 

For example: 

AMT : { use is amt, variable = GUT } 
 

For the current version of the interoperability framework SEE, the name of this variable must be 
AMT or DOSE. 
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Within the Model Object, the dose amount is defined when AMT > 0 if the DATA_INPUT_VARIABLES 
variable is defined as “use is amt”. It is not necessary to conditionally assign a Model Object variable 
to this value when AMT > 0. This is taken care of in translation to PharmML behind the scenes. If, 
however, the user chooses to treat the dose amount column as “use is covariate” or “use is 
variable” then this will need conditional assignment within the model. Also, in that case the dosing 
amount variable should be declared in the COVARIATES block of the Model Object. 

For analytical models (such as UseCase2) the dosing amount may be defined with respect to a dosing 
variable in the Model Object, rather than as an initial amount in a differential equation or 
compartment. In that case it is necessary to declare the dosing variable within the MODEL_PREDICTION 
block: 

The declared dosing variable for analytical models should have type ::dosingTarget. This maps into 
variables of type ::dosingVar and ::dosingTarget in the Model Object. Examples of ::dosingTarget are 
COMPARTMENT variables with “type is depot”, “type is direct” and also variables defined by 
differential equations. 

For example: 

In the Data Object: 

DECLARED_VARIABLES{ D::dosingTarget } 

DATA_INPUT_VARIABLES{ 

  AMT : { use is amt, variable=D } 
} 
 

In the Model Object: 

MODEL_PREDICTION { 
    D :: dosingVar # dosing variable 
    k = CL/V 
    CC = if ( T < TLAG) then 0 
       else (D/V) * KA/(KA-k) * (exp(-k * (T - TLAG))- exp(-KA*(T-TLAG)) ) 
} # end MODEL_PREDICTION 

 

MDL supports definition of multiple doses via DATA_INPUT_VARIABLES defined as “use is ii”, “use 
is addl”, “use is ss”. 

MDL supports infusion rate (zero-order input rate) specification via DATA_INPUT_VARIABLES with “use 
is rate”. The current version of MDL does not support negative values for “use is rate” in 
order to allow model defined rate or duration. 

Please also read the section 2.2.7 and 2.2.8 on assignment using “variable = …” compared to using 
“define = …”. 

2.2.2 Defining the independent variable 
The independent variable is defined through a DATA_INPUT_VARIABLES with “use is idv”. The Model 
Object has an IDV block where the independent variable in the model is defined and the model 
variable defined in this block is automatically mapped to the Data Object variable defined as “use is 
idv”. This is used to link the model independent variable in the Model Object IDV block and the event 
(observation, dosing) times specified in the DATA_INPUT_VARIABLES. 

Syntax: 

<Variable> : { use is idv } 
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Typically the independent variable will be time. UseCase11 shows a pharmacodynamic model with the 
plasma concentration as the independent variable. 

For the current version of the SEE, the name of the independent variable must be TIME. 

2.2.3 Defining the dependent variable 
The dependent variable is defined through a DATA_INPUT_VARIABLES with “use is dv”. This data 
variable is the observation and must be mapped to the Model Object OBSERVATION block prediction 
variable using the Data Object DECLARED_VARIABLES block 

For the current version of the interoperability framework SEE, the name of the dependent variable 
must be DV. 

2.2.3.1 Continuous data, single Model Object OBSERVATION prediction 
If there is only one observation type and it is continuous then the user should map the 
DATA_INPUT_VARIABLES “use is dv” variable to a prediction variable name in the Model Object 
OBSERVATION block. It is possible to map the dependent variable to a single, specified Model Object 
OBSERVATION prediction variable using “variable = <NAME>” 

The Model Object OBSERVATION block prediction variable name must be declared in the Data Object 
DECLARED_VARIABLES block. 

The observation variable in the DECLARED_VARIABLES block must have type ::observation. 

For example: 

In the Data Object: 

DECLARED_VARIABLES{ Y::observation } 

DATA_INPUT_VARIABLES{ 

… 

  DV : { use is dv, variable = Y } 
… 
} 
  

In the Model Object: 

 OBSERVATION{ 
         Y : {type is additiveError, additive=SD_ADD, eps=EPS_Y, prediction= CONC} 

  }# end OBSERVATION 

2.2.3.2 Multiple Model Object OBSERVATION predictions 
If mapping the single dataset dependent variable column (with “use is dv”) to multiple Model Object 
OBSERVATION prediction variables, it is necessary to also define a DATA_INPUT_VARIABLE with “use is 
dvid” that identifies which records of the dataset belong to each observation type. The user must also 
define how to map the Model Object OBSERVATION block variables to values in the 
DATA_INPUT_VARIABLE with “use is dvid”. 

The syntax is as follows define={<value> in <data column name with “use is dvid”> as 
<DECLARED_VARIABLE variable>, etc.}.  

For example (UseCase3): 

In the Data Object: 

DECLARED_VARIABLES{ CP_obs::observation PCA_obs::observation } 
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DVID : { use is dvid } 

      DV :   { use is dv, define={1 in DVID as CP_obs, 2 in DVID as PCA_obs} } 
 

In the Model Object: 

   OBSERVATION{ 
         CP_obs : {type is combinedError1,  
   additive = RUV_ADD, proportional = RUV_PROP,  
   eps = EPS_CP, prediction = CC }  
        PCA_obs : {type is additiveError,  
   additive = RUV_FX,  
   eps = EPS_PCA, prediction = PCA } 
   }# end OBSERVATION 

This means when the data variable with “use is dvid” has the value 1 then the observation in the data 
variable with “use is dv” within the same data record will be mapped to the Model Object 
OBSERVATION block variable CP_obs, and when this variable has the value 2 it will be mapped to 
PCA_obs. 

All continuous observation variables must be declared in the DECLARED_VARIABLES block 
as ::observation. 

 

When declaring an outcome variable that is binary (UseCase12) or categorical (UseCase13), it is 
necessary in the DECLARED_VARIABLES block to define the category name for the Model Object  
variables which define the prediction. 

For example (UseCase12): 

In Data Object: 

   DECLARED_VARIABLES{ Y withCategories{none, event} } 
 

Using this convention, the type is implicit in the “withCategories” keyword. 

Note that when declaring an outcome variable with a Poisson count or Binomial number of successes 
outcome, Y is declared as the variable attribute of an anonymous OBSERVATION block list. 

For example (UseCase11): 

In the Data Object: 

   DECLARED_VARIABLES{ Y::observation } 
 

In the Model Object: 

  RANDOM_VARIABLE_DEFINITION(level=DV){ 
   Y ~ Poisson1(rate=LAMBDA) 
  } 
 
   OBSERVATION{ 
   :: {type is count, variable = Y} 
   }# end ESTIMATION 

2.2.4 Mapping data variables to model  variability levels  
The hierarchy of model levels of variability is defined within the Model Object in the 
VARIABILITY_LEVELS block. Within the Data Object we match the levels in the model to 
DATA_INPUT_VARIABLES to identify the data variables where changing values signify new individuals, 
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occasions or observations (and other levels of variability in the model). By default the lowest level of 
the hierarchy is the observation level with DATA_INPUT_VARIABLES defined as “use is dv”. The other 
variability level commonly used is the experimental unit, in clinical trials this is typically the subject 
with DATA_INPUT_VARIABLES defined as “use is id”.  

The level in the hierarchy is defined by a numerical level value in the Model Object VARIABILITY LEVELS 
block. 

For example (UseCase1): 

In Data Object: 

DATA_INPUT_VARIABLES{ 
      ID : { use is id }   
 … 
      DV : { use is dv, variable = Y } 
 … 
   }# end DATA_INPUT_VARIABLES 
 

In the Model Object: 

   VARIABILITY_LEVELS{ 
 ID : { level=2, type  is parameter } 
    DV : { level=1, type  is observation } 
   } 
 

Other variability levels may be defined in DATA_INPUT_VARIABLES as “use is varLevel”. This will be 
used to define variability levels such as occasion, study (if modelling across more than one study) etc.  

For example, when defining occasions for use in between occasion variability models: 

    OCC : { use is varLevel } 
 
For example (UseCase8): 

In Data Object: 

  DATA_INPUT_VARIABLES{ 
      ID : { use is id }   
      TIME : { use is idv } 
      WT : { use is covariate } 
      AGE : { use is covariate } 
      SEX : { use is catCov withCategories {female when 1, male when 0} } 
      AMT : { use is amt, variable = INPUT_KA} 
      OCC : { use is varLevel } 
      DV : { use is dv, variable = Y } 
      MDV : { use is mdv } 
   }# end DATA_INPUT_VARIABLES 
 

In Model Object: 

   VARIABILITY_LEVELS{ 
 ID : { level=3, type  is parameter } 
 OCC : { level=2, type  is parameter } 
    DV : { level=1, type  is observation } 
   } 
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MDL does not place any limits on the number of levels of variability within the Model Object. However 
some constraints may exist within the target software used for estimation. 

Note that occasionally, if modelling summary level data in a model-based meta-analysis, the 
experimental unit defined in the data may be different, for example, the treatment arm rather than an 
individual subject.  

For example: 

In Data Object: 

  DATA_INPUT_VARIABLES{ 
      ARM : { use is id }   
      DV : { use is dv, variable = Y } 
   }# end DATA_INPUT_VARIABLES 
 
In Model Object: 

   VARIABILITY_LEVELS{ 
 ARM : { level=2, type  is parameter } 
    DV : { level=1, type  is observation } 
   } 
 

See section 4.6 for  discussion of identifying the reference level of variability when using a model with 
a Design Object. 

 

2.2.5 Defining covariates 

2.2.5.1 Defining continuous covariates 
Continuous covariates (including time-varying covariates) are defined as “use is covariate”.  

Note the discussion in sections 4.3 and 4.9 about the requirements of covariates that are to be used in 
definition of INDIVIDUAL_PARAMETERS. 

Interpolation can be specified for continuous covariates through the argument “interp = &constInterp | 
&cubicInterp | &lastValueInterp | &linearInterp | &nearestInterp | &pchipInterp | &splineInterp”. 

Note the “&” in front of the interpolation type to signify that a function is being referenced. 

Interpolation functions take as arguments t0 (start of time interval), t1 (end of time interval), x 
(variable for interpolation), x0 (variable value at t0) and x1 (variable value at t1).  

2.2.5.2 Defining categorical covariates 
Categorical covariates are defined as “use is catCov” and must have a mapping between the values 
in the data column and categories to be used in the model. This serves a dual purpose: firstly, 
providing clarity on how numeric codes in the data map to named categories and secondly, 
transparency in model description by allowing us to use those named category labels in the model when 
referring to the categories. 

The mapping is performed by using the keyword “withCategories” and then specifying the mapping 
between categories and values using <category> when <value> in a comma separated list. 

SEX : {use is catCov withCategories {female when 1, male when 0} } 
 

The categories defined (female, male) must match those defined within the Model Object COVARIATES 
block. Note that the category labels (female, male) are not character strings. They are enumerated 
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variables, and can be referred to in the model as SEX.female or SEX.male. For example to define an 
action dependent on the SEX being female in the Model Object we would use the Boolean comparison 
SEX == SEX.female. This evaluates to true when the value in the SEX column matches the value defined 
(in the DATA_INPUT_VARIABLES as above) that corresponds to the female category of the SEX variable.  

In the current version of MDL the categories defined must be unique i.e. it is not possible to assign 
more than one value to a category, nor is it possible to define several categories with the same name. 
This means that each category maps to only one data value. The following is code NOT valid: 

food : {use is catCov withCategories {fed when 2, fasted when 1, fasted when -999} 

Nor is: 

food : {use is catCov withCategories {fed when 2, fasted when [-999,1] } 

The user should identify all categories in the DATA_INPUT_VARIABLE block: 

food : {use is catCov withCategories {fed when 2, fasted when 1, missing when -999} 

2.2.6 Defining model inputs or time-varying covariates 
Often we will want to pass data variables to the GROUP_VARIABLES or MODEL_PREDICTION blocks in the 
Model Object which will not fit the definition of covariates as defined in section 2.2.5. This might be 
the case if we want to pass individualised predictions of PK parameters into a PD model, or a time-
varying covariate such as plasma concentration or age for use in a maturation model. These variables 
are sometimes referred to as regressors or model input variables. 

These variables are defined in MDL as “use is variable”. 

Variables with “use is variable” should not be used with definition of INDIVIDUAL_PARAMETERS with 
“type is linear”. 

2.2.7 Assignment to a single variable using “variable = <NAME>” 
If the value of the variable within the data is to be mapped to a single model variable e.g. dosing 
amount D, then the variable attribute must be assigned, and the associated variable declared in 
DECLARED_VARIABLES: 

DECLARED_VARIABLES{ D::dosingTarget Y::observation } 

DATA_INPUT_VARIABLES{ 

  … 

  AMT : { use is amt, variable = D } 

  DV : { use is dv, variable = Y } 
  … 
 } 
 

2.2.8 Assignment to multiple variables using “define = < … >” 
 
In the case of mapping data values to multiple variables depending on the values of another variable, 
the syntax is as follows define={<value> in <data variable name> as <declared_variable>, 
etc.}. The Model Object variables used in this definition must also be declared in the 
DECLARED_VARIABLES block. 

DECLARED_VARIABLES{ CP_obs::observation PCA_obs::observation } 

DATA_INPUT_VARIABLES{ 
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    … 

  DVID : { use is dvid } 
  DV :   { use is dv, define={1 in DVID as CP_obs, 2 in DVID as PCA_obs} } 

  … 

} 

2.3 SOURCE Block 
This block defines the source data file for use with the model. It defines the file name and file format. 

In the current version of MDL it is assumed that the SOURCE data file will be present as an ASCII 
comma-delimited text file (.csv). We also assume that the dataset conforms to NONMEM data 
standards. The data file should have a header row with names matching those in the 
DATA_INPUT_VARIABLES block. Data values should be numeric. Missing values should be denoted 
by “.”. 

The MDL syntax is as follows: 

<source object name> : {file = <filename>,  

   inputFormat is nonmemFormat } 

For example: 

SOURCE { 
srcfile : {file = "warfarin_conc.csv",  
       inputFormat is nonmemFormat }  
} # end SOURCE 

 

For the current version of the interoperability framework SEE, data files must be in the same 
folder and workspace as the model file.  

2.4 DECLARED_VARIABLES Block 
This block links variables defined in the Model Object with variables defined within the Data Object - 
occasionally we need to refer to Model Object variables while describing the data constructs. For 
example:  When defining the Pharmacokinetic model (UseCase1) we need to define which Model Object 
variable receives the dosing amount – in this case the differential equation specifying the amount in 
the GUT, and an observation variable Y.  

 Since the MDL objects are independent of each other (i.e. the Data Object is not “aware” of Model 
Object variables) we must explicitly declare Model Object variables within the Data Object if we need 
to refer to them.  

When declaring the variable, the user must also define the variable type. A controlled vocabulary of 
types is provided through the MDL-IDE. Type is defined via the double colon: 

 <Variable name> :: <type> 

For example: GUT :: dosingTarget Y :: observation. 

This improves validation of the MOG since we can check that Data Object DATA_INPUT_VARIABLE use is 
mapped to an appropriate type of variable and that this passes through to the appropriate type of 
variable in the Model Object. This change is also required to ensure that the Data Object and the 
Design Object handle definition and declaration of variables in an equivalent way.  

The following types will be typically of use in DECLARED_VARIABLES: 

dosingTarget, observation. 
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As has been described above, when declaring an outcome variable that is binary (UseCase12) or 
categorical (UseCase13), it is necessary in the DECLARED_VARIABLES block to define the categories for 
the outcome variable. 

Note that when declaring an outcome variable with a Poisson count or Binomial number of successes 
outcome, Y is declared as observation. 

Note that no delimiter is required between variables defined in the DECLARED_VARIABLES block.  

In the current MDL, variable names mapped across MDL Objects must match e.g. if we declare 
variable Y in the Data Object, then this will be linked to the Model Object OBSERVATION block 
variable Y.  

2.5 DATA_DERIVED_VARIABLES Block 
Occasionally, the user will need to define new variables that depend on existing information in the 
dataset for example the dose amount or dose time when this is to be used as a covariate in the model. 
The DATA_DERIVED_VARIABLES block allows the user to define new variables using data in the columns 
with “use is amt” and “use is idv”. The variables defined must have unique names, different from 
those specified in the DATA_INPUT_VARIABLES. 

Syntax is 

<variable> : {use is <doseTime / covariate / variable / doseInterval>, … }  

The subsequent arguments of the list depend on its use. 

<variable> : {use is doseTime, idvColumn = <DATA_INPUT_VARIABLE variable with “use is idv”>, 
dosingVar =  <dosing variable defined with type ::dosingTarget>}   

In the current MDL, “use is doseInterval” below cannot currently be mapped to PharmML. 

<variable> : {use is doseInterval, idvColumn = <DATA_INPUT_VARIABLE variable with “use is 
idv”>, dosingVar = <dosing variable defined with type ::dosingTarget> }  

<variable> : {use is covariate, column = <DATA_INPUT_VARIABLE variable> }  

<variable> : {use is catCov, column = <DATA_INPUT_VARIABLE variable> }  

<variable> : {use is variable, column =  <DATA_INPUT_VARIABLE variable> }  

For example (UseCase2_1): 

DATA_DERIVED_VARIABLES{ 
# Like 'use is amt' we assume that the DT variable is only assigned when AMT > 0.   
# The typing ensured that the attributes reference a column with the correct 'use'. 
 DT : { use is doseTime, idvColumn=TIME, amtColumn=AMT } 
  } 
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3 The Parameter Object 
The Parameter Object defines model parameter values for use with the Model Object. In estimation 
tasks, these are typically the initial values for the estimation algorithm, or fixed parameter values 
within the model.  

The Parameter Object should provide a value for each parameter listed in the Model Object 
STRUCTURAL_PARAMETERS and VARIABILITY_PARAMETERS blocks. 

STRUCTURAL and VARIABILITY parameter blocks are kept separate to allow the user to quickly identify 
the function of each parameter in the model and to facilitate certain tasks, for example fixing 
variability parameters for simulation.  

3.1 STRUCTURAL Block 
The STRUCTURAL block defines the numerical values of the structural parameters with optional 
constraints (low and high values) and whether the value is fixed or to be estimated. Each structural 
parameter must have the value argument assigned a numeric value. 

For each structural parameter the typical construct will be  

<PARAMETER NAME> : { value = <numeric> } 

Or, with additional optional attributes 

<PARAMETER NAME> : { value = <numeric>, lo = <numeric (lower bound)>, hi = <numeric 
(upper bound)>, fix = <true | false> } 

This provides a numerical value for a parameter which may be used as an initial estimate for 
estimation or as a value for simulation. Numerical values may be expressed in scientific notation. 

The lo and hi attributes are optional and are used to define lower and upper boundaries for 
estimation.  

The fix attribute is optional. It may be set to a logical value of true or false. The default value of fix 
is false. When fix is true the parameter will not be estimated in an estimation task. Specifying “fix = 
true” overrides any setting of lo and hi.  

STRUCTURAL { 
 POP_CL : { value = 0.1, lo = 0.001 } 
 POP_V : { value = 8, lo = 0.001 }  
 POP_KA : { value = 0.362, lo = 0.001 } 
 POP_TLAG : { value=1, lo=0.001 } 
 BETA_CL_WT : { value = 0.75, fix = true } 
 BETA_V_WT : { value = 1, fix = true }  
 RUV_PROP : { value = 0.1, lo = 0 } 
 RUV_ADD : { value = 0.1, lo = 0 }  
 } # end STRUCTURAL 

3.1.1 Note on parameter values 
It is typical to specify log-Normal distributions for parameters, but the user should be aware that in 
some models, parameters may be negative. As with other languages, the user should be careful to 
avoid parameterisations that would lead to taking logs of a negative number. 

3.2 VARIABILITY Block 
The VARIABILITY block defines the names and values of random effect parameters (including 
covariance or correlation parameters) that are to be used in the Model Object. Similar to the 
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STRUCTURAL block above, the VARIABILITY block provides initial values for estimation. Each variable 
must have the value argument assigned a numeric value. 

The VARIABILITY block has a more complex structure because it needs to express both values for 
variance parameters, but also any correlations or covariances between these variance parameters 
(random effects). 

Currently, MDL supports definition of the VARIABILITY (random effect) parameters and definition of the 
covariance or correlation between these parameters (see section 3.2.1). 

Similar to the STRUCTURAL block, the VARIABILITY block requires attributes for each random effect 
used in the model. 

For each random effect parameter the typical construct is  

<PARAMETER NAME> : { value = <numeric> , type is <sd | var> } 

With additional fix attribute 

<PARAMETER NAME> : { value = <numeric>, type is <sd | var>, fix = true } 

The type argument specifies whether the initial values and parameter estimation are specified on the 
standard deviation scale. The parameter  value type must correspond to the type used in the Model 
Object RANDOM_VARIABLE_DEFINITION block.  

Within the Parameter Object VARIABILITY block, we no longer need to specify the type of variability 
(variance or sd). The Parameter Object simply defines values for the parameters used in the Model 
Object RANDOM_VARIABLE_DEFINITION block. The user then needs to ensure that the parameter values 
are on the appropriate scale. 
 

Note: that in the version of PsN used in the current version of the SEE, bootstrap estimates of 
variability parameters are not available on the standard deviation scale. Returned variability 
parameters from bootstrap estimation will be on the variance scale. 

An example VARIABILITY block: 

VARIABILITY { 
 PPV_CL : { value = 0.1, type is sd } 
 PPV_V : { value = 0.1, type is sd } 
 CORR_CL_V : { value = 0.01 } 
 PPV_KA : { value = 0.1, type is sd } 
 PPV_TLAG : { value = 0.1, type is sd, fix=true } 

  RUV_PROP : { value = 0.1, lo = 0 } 
 RUV_ADD : { value = 0.1, lo = 0.0001 }  

} # end VARIABILITY 

Note that parameter estimates for residual errors e.g. RUV_PROP and RUV_ADD above are now 
specified as VARIABILITY parameters, and not STRUCTURAL. Typically, these parameters are defined 
as multipliers of standard Normal(0,1) random variables in definition of the residual error model. The 
purpose of the VARIABILITY block definition in the Parameter Object is to make it easier to identify 
those parameters associated with variability and if required “turn off” variability by fixing these 
parameters to zero. Placing the residual error parameters in the STRUCTURAL parameter block made 
this difficult, since these parameters can have arbitrary names. Nevertheless, the models are 
equivalent whether residual errors are defined by parameters specified in the STRUCTURAL or in the 
VARIABILITY block. 

Note also that correlations between parameters are given parameter values in the VARIABILITY block, 
but definition of correlation and covariance now occurs in the Model Object 
RANDOM_VARIABLE_DEFINITION block. 
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When defining values for multivariate distributions, the user may need to define vectors and matrices 
to define the mean and covariance matrix (respectively). To do so the user defines a list with the 
following syntax: 

To define a vector of length k: 

 < VARIABLE NAME > : {vectorValue = [ <value1>, <value2>, … <valuek>] } 

The square brackets denote that the result is a vector. 

 

To define a matrix of size n rows by p columns: 

 < VARIABLE NAME> = [[ <value_1_1>, <value_1_2>, … , <value_1_p>; 

     <value_2_1>, <value_2_2>, …, <value_2_p>; 

     … 

     <value_n_1>, <value_n_2>,…, <value_n_p>]] 

Note the double square brackets to define the matrix type, comma separated values to signify 
individual elements and semi-colon to specify the end of a row. 

Alternatively to create a matrix, it is possible to use functions “diagonal”, “triangle”, “matrix”. These 
take a vector as input and return a matrix. 

For example (UseCase6_2.mdl): 

VARIABILITY { 

  PPV_CL_V_KA : {matrixValue = triangle([0.1,  

        0.01, 0.1,  

        0.01, 0.01, 0.1], 3, true)} 

 … 

  } # end VARIABILITY  

 

3.2.1 Parameter naming 
Unlike some target software, MDL does not have reserved names for parameters, nor is any meaning 
extracted from parameter names.  

In the MDL documentation, we have used the convention that variability parameters describing the 
population parameter variability from the combination of between subject and within subject 
(between occasion) random effects are named PPV_. The individual level random effects we’ve named 
ETA_ since this is a familiar convention for many analysts. The residual unexplained variability 
parameters have been named RUV_ and the random variable associated with these has been named 
EPS_ again to following a familiar convention. 

3.2.2 Covariances and Correlations 
Random variability parameters and any covariances or correlations are defined separately, rather than 
as a combined matrix.  

The covariance (or correlation) between random effects is defined as follows: 

<PARAMETER NAME> : { parameter = <vector of random effect variables> , value = <vector of values>, 
type is <cov | corr> } 
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The random effects variables must be declared in the DECLARED_VARIABLES block within the 
Parameter Object so they can be mapped to the random effect variables in the Model Object. 

Note that value expects a vector, so even if a single correlation is specified (one value) then this 
must be enclosed in square brackets to signify this is a vector with one element. 

So for a simple example where the between subject variance parameters for CL, V and KA are on the 
standard deviation scale and the correlation between these parameters is to be specified, the standard 
deviation - correlation matrix (standard deviation on the diagonal, correlation off diagonal) is given by  

 

�
𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝑃𝑃_𝑉𝑉
𝑃𝑃𝑃𝑃𝑃𝑃_𝐾𝐾𝐾𝐾

� =  �
𝑠𝑠𝑠𝑠 =  0.1 0.01 0.01

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝑠𝑠𝑠𝑠 =  0.1 0.01
𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝑠𝑠𝑠𝑠 =  0.1

� 

 

And the corresponding MDL code is: 

warfarin_PK_CORR_par = parObj { 
DECLARED_VARIABLES{ ETA_CL ETA_V ETA_KA} 
STRUCTURAL { 
 … 
 } # end STRUCTURAL 
VARIABILITY { 
 PPV_CL : {value=0.1, fix=true, type is sd} 
 PPV_V : { value = 0.1, type is sd } 
 PPV_KA : { value = 0.1, type is sd } 
 PPV_TLAG : { value = 0.1, type is sd, fix=true }   
# correlation between CL, V, KA 
 OMEGA1 : {type is corr, parameter=[ETA_CL, ETA_V, ETA_KA],  
     value=[0.01, 0.01, 0.01]} 
 } # end VARIABILITY 
} # end of parameter object  

 

In the code above, the variable OMEGA1 is defined as the lower triangle of the matrix above 
(correlation entries only) and three values are required to define the correlations between the 
parameters. Specifying the between subject variability parameters separately from covariances and 
correlations allows the user to change the covariance or correlation structure independently of the 
other variance parameter definitions. 
 
If any VARIABILITY block variable associated with the correlation or covariance list definition has 
the attribute fix=true, then all diagonal and off-diagonal elements of the standard deviation – 
correlation matrix will be assumed to have the attribute fix=true. 
 

Note that the parameters correlated are the random effects rather than the parameters defining the 
distribution of the random effects. Thus it is these random effect variables that are declared in the 
DECLARED_VARIABLES block. 

In the current version of MDL, if a covariance or correlation is specified between three or more 
parameters then all elements of that covariance or correlation must be estimated.  
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4 The Model Object 
The Model Object within the MDL is intended to describe the mathematical and statistical properties of 
the model. MDL defines language elements that allow the user to code a wide variety of models and in 
a variety of ways. The Model Object is intended to specify the model independent of the target 
software which will be used for the task (estimation or simulation). The same model should be able to 
be used for a variety of tasks – estimation, simulation or optimal design without recoding. The Model 
Object should also be independent of the data – where possible we use enumerated types for 
categorical covariates and outcomes so that definition of the model is clear to any user regardless of 
the data used in a given task. 

It should be noted however that MDL does not guide the user about whether the model that is defined 
is suitable for a given purpose or for any target software. The user is free to define any model, 
however they must also be aware that the specified model may not be useable with all target 
software. 

As stated in the Introduction, the Model Object is intended to convey the mathematical and statistical 
definitions required to completely define the model. MDL used in defining the model is intended more 
as a descriptive language rather than a programmatic one. The Model Object is used in tasks by 
combining it with Data, Parameter and Task Properties objects, and defining tasks within the R script.  

Currently defined blocks are IDV, COVARIATES, POPULATION, FUNCTION, VARIABILITY_LEVELS, 
STRUCTURAL_PARAMETERS, VARIABILITY_PARAMETERS, GROUP_VARIABLES, 
RANDOM_VARIABLE_DEFINITION,  INDIVIDUAL_VARIABLES , MODEL_PREDICTION, DEQ, COMPARTMENT, 
OBSERVATION.  

Which blocks within the Model Object are used for a particular model depends on the structure of that 
model. Blocks should not be left empty (although this is not a syntax error). It is good practice to 
structure and write the model to facilitate readability and understanding of the model. Simple 
statements that are clear and unambiguous are preferred to statements combining many actions into 
one line of code. Use of the MODEL_PREDICTION block is encouraged to make it clear what the final 
prediction is from the model prior to use in generation of the observation level. 

In the current version of MDL, the variable names and parameter names in the 
STRUCTURAL_PARAMETERS and VARIABILITY_PARAMETERS blocks of the Model Object must be matched 
to those in the Data and Parameter objects.  The MOG Object brings together the Data, Parameter, 
Model and Task Properties Objects to perform tasks, and at this stage it is assumed that the variable 
names match across objects. 

The independence of the Data Object from the model means that the data referenced by the Data 
Object may be easily used with a different model without modification of the Data Object. Similarly, 
the independence of the Parameter Object from the model means that all the parameters related to 
modelling project e.g. describing a particular drug, may be stored in one place. Note that parameters 
defined in the Parameter Object must have unique names. 

Unlike other MDL Objects, the Model Object does not use a DECLARED_VARIABLES block. Instead 
variables are declared when they are used within the IDV, COVARIATES, STRUCTURAL_PARAMETERS, 
VARIABILITY_PARAMETERS blocks. Particular care may be required for models defined using analytic 
equations (rather than via differential equations, compartments). In these models it may be necessary 
to declare inputs such as DOSE within the MODEL_PREDICTION block. 

4.1 On interoperability 
The primary focus of MDL in this release is translation to valid PharmML, rather than conversion to 
target software. The previous Public Release was primarily concerned with demonstrating 
interoperability across key software targets. In this version of MDL there may be features supported 
which are not supported by certain target software, but which are valid for model description and 
which generate valid PharmML. The aim is to widen the scope of models which can be encoded in MDL 
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and generate PharmML, since the latter is required for uploading models to the DDMoRe repository. 
Translation of these models to target software will follow with updates to the interoperability 
framework converters. 

The MDL-IDE should assist the user in ensuring that the models encoded are valid MDL (and as a 
consequence, also valid PharmML).  

Models in MDL may be expressed in a number of ways, which may be influenced by a number of factors 
including which languages the user is familiar with for encoding models. Flexibility allows the user to 
encode models quickly in a common language (MDL) which can then be shared with others and mutually 
understood. This flexibility also facilitates encoding in a given target when that language construct 
does not have a parallel in other tools. However, we STRONGLY encourage the user to encode the 
majority of models in a way that will facilitate interoperability. Interoperability allows the user of the 
model to choose the best tool for the job, or at least the tools that they have available to them. 

If the user follows certain conventions for coding then it will increase the chance that a given model is 
interoperable between target tools. These conventions will be highlighted in the subsequent sections, 
but users should pay particular attention to sections 4.7, 4.9 and 4.10 on definition of 
GROUP_VARIABLES defining fixed effects, INDIVIDUAL_VARIABLES defining the relationship between 
covariates (or GROUP_VARIABLES defined variables) and random effects and MODEL_PREDICTION using 
these parameters to calculate predictions for given inputs. 

4.2 IDV Block 
The IDV block defines the independent variable within the model. Typically this is TIME (or T for 
differential equations). An IDV block must be present in the Model Object. The default for the 
independent variable is “T”.  

The syntax is a simple variable declaration: 

 IDV{ <Independent variable name> } 
 

Note that the independent variable defined in the model will be mapped to the Data Object 
DATA_INPUT_VARIABLES variable with “use is idv”.  

4.3 COVARIATES Block 
The COVARIATES block declares and defines covariates to be used in the GROUP_VARIABLES, 
INDIVIDUAL_VARIABLES and MODEL_PREDICTION blocks (see discussion of regressors below for use of 
covariates in the MODEL_PREDICTION block). Covariates listed in the COVARIATES block must be 
specified as “use is covariate” or “use is catCov” in the DATA_INPUT_VARIABLES block in the Data 
Object or defined in the POPULATION block of the Design Object. Covariate transformations may be 
specified within this block. 

 COVARIATES{ 

 <Covariate name > 

 <Categorical covariate name > withCategories {<category1>, <category2>, … , <category_k>} 

 <Covariate name> = <simple transformation equation> 

 } 

For categorical covariates, the categories defined in the COVARIATES block must match those specified 
for DATA_INPUT_VARIABLES with “use is catCov” – see the definition of the SEX covariate above. 

An example COVARIATES block is shown below: 

 COVARIATES{ 
  WT 
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  SEX withCategories {female, male}  
  logtWT = ln(WT/70) 
 } 
 

In this example the withCategories prefix to the list of category names will be used to link to the 
values associated with these names in the Data Object. 

The logtWT variable in the COVARIATES block may be used as the value for the cov attribute in the 
linear function in the INDIVIDUAL_VARIABLES block if WT follows the above rules for covariates. 

Please also read about the specification of covariate models in sections 4.7 and 4.9. 

The definition of covariates above assumes that the covariates are constant within individuals or vary 
only at occasion levels. It is also possible to define covariates that vary with the independent variable 
(typically time): 

 COVARIATES(type is idvDependent){ 
  WT 
  logtWT = ln(WT/70) 
 } 

Covariates which are defined as idvDependent should NOT be used in the “type is linear” 
definition of INDIVIDUAL_PARAMETERS. 

4.4 STRUCTURAL_PARAMETERS Block 
This block declares fixed effect parameters that define the structure of the model. There is no 
separator character in between variable names. The variable names do not need to be on separate 
lines, but it may be easier to read if they are presented in this way and it allows comments to be 
added to help communication 

 STRUCTURAL_PARAMETERS{ 

    <Variable name(s) of structural parameters> 

 } 

For example: 

 STRUCTURAL_PARAMETERS {  
  POP_CL 
  POP_V 
  POP_KA 
  POP_TLAG 
  BETA_CL_WT 
  BETA_V_WT 
  RUV_PROP 
  RUV_ADD 
 } # end STRUCTURAL_PARAMETERS 

4.5 VARIABILITY_PARAMETERS Block 
Similar to the STRUCTURAL_PARAMETERS block, this block declares all the variability (including 
covariance, correlation and residual error) parameters (population parameter variability and other 
variability level parameters) used in the model. The variable names do not need to be on separate 
lines, but it may be easier to read if they are presented in this way and allows comments to be added 
to help communication 

 VARIABILITY_PARAMETERS{ 

    <Variable name(s) of variability parameters> 
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 } 

For example: 

 VARIABILITY_PARAMETERS { 
  PPV_CL 
  PPV_V 

CORR_CL_V 
  PPV_KA 
  PPV_TLAG 
  RUV_ADD # units mg/L 
  RUV_PROP 
 } # end VARIABILITY_PARAMETERS  

4.5.1 Residual Unexplained Variability 
Residual variability is typically defined as a standard Normal distribution ~N(mean=0, var=1). The 
standard residual error models (see section 4.12.1) then define the parameters of that model e.g. 
additive and proportional which multiply the random N(0,1) variable. They can also define expressions 
involving parameters which define the residual error model. These parameters should be declared as 
VARIABILITY_PARAMETERS. As such these additive and proportional parameters are typically defined in 
the STRUCTURAL_PARAMETERS block. 

4.6 VARIABILITY_LEVELS Block 
The VARIABILITY_LEVELS block defines the model hierarchy. Each variable should have attributes 
defining its level in the model hierarchy and variability type which is one of “parameter” or 
“observation”. DATA_INPUT_VARIABLES with “use is dv” and “use is id” are automatically 
identified as describing variability levels. Additional variables can be used to define variability levels 
by defining these as “use is varLevel” in DATA_INPUT_VARIABLES. 

We assume that level = 1 is the level of each observation. Additional levels of the hierarchy are added 
to this. Typically in population models there is at least one additional level of variability – that of the 
individual (the experimental unit). Occasionally if modelling summary level data in a model-based 
meta-analysis, treatment arm may be used as the experimental unit and labelled in the 
DATA_INPUT_VARIABLES block as “use is id”.  

 VARIABILITY_LEVELS{ 

    <Variable name> : { level = <number>,  

     type is <parameter / observation>} 

 } 

For example: 

VARIABILITY_LEVELS{ 
   ID : { level=2, type is parameter } 
   DV : { level=1, type is observation } 
}  

 

If between occasion variability is required in the model then this should be specified here as a 
variability level between the observation and individual levels. In NONMEM occasion is typically 
specified as an additional layer of inter-individual variability which is defined conditionally on an 
occasion variable in the dataset. In MDL this is explicitly treated as a distinct level of variability. 

VARIABILITY_LEVELS{ 
   ID : { level=3, type  is parameter } 
   OCC : { level=2, type  is parameter } 
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   DV : { level=1, type  is observation } 
} 

 

Additional levels of variability are easily implemented by incrementing “level =  <number>” with an 
associated DATA_INPUT_VARIABLE with “use is varLevel”. This facilitates definition of levels such as 
between trial random variability.  

The distinction between “type is observation” and “type is parameter” will be used further in 
future versions of MDL to describe models where there are additional levels of hierarchy above the 
individual e.g. when describing differences between trials as a random effect, or modelling population 
level differences; and at the observation level e.g. replicates of PD measurements at each time point, 
or multiple assays of a single sample.  

When estimating model parameters using observed data, the DATA_INPUT_VARIABLE with “use is id” is 
automatically taken as the “reference level” of the model hierarchy13. When using a Design Object, the 
reference level of the model hierarchy is likely to be implicit (subjects in a study arm) rather than 
explicit. In this case it will be necessary to use the following syntax: 

 

VARIABILITY_LEVELS(reference=ID){ 

   ID : { level=3, type  is parameter } 

   OCC : { level=2, type  is parameter } 

   DV : { level=1, type  is observation } 

} 

Since the Model Object is intended to be unchanging across tasks, it is good practice to include this 
(reference = <reference variability level variable> ) syntax in all cases. In most pharmacometrics 
models this reference level will be the individual.  

4.7 GROUP_VARIABLES Block 
The GROUP_VARIABLES block can be used to specify group specific variables using parameters and fixed 
effect relationships between parameters and covariates. The INDIVIDUAL_VARIABLES block can then 
use these values in definition of the individual parameters by incorporating the random between 
individual variabilities defined in the RANDOM_VARIABLE_DEFINITION block(s). 

Using the GROUP_VARIABLES block to define covariate relationships is not supported for parameter 
estimation in some target software since the equations defined in the GROUP_VARIABLES block are user 
defined. The MDL-IDE is not equipped to determine whether the defined relationships conform to linear 
relationships (after transformation) that have been shown to allow interoperability between software. 

For this reason we suggest that definition of covariate dependent GROUP_VARIABLES is used only in 
cases where a reformulation to “linear” or “linear after transformation” relationships with covariates 
as defined in section 4.9 is not possible. 

The GROUP_VARIABLES block is essential for defining relationships between structural parameters and 
covariates which are non-linear, even after transformation. For example to describe clearance across 
both adults and children a maturation model may be required. For example: 

 GROUP_VARIABLES{ 
  FSIZE = (WT/70) ^ 0.75 

13 PharmML Specification 0.2.1 section 11.4 Modelling Steps, item 1.2.30 
http://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxwaGFybW1sdGVtcHxneD
o3YzY1YWNkZGQxMmQwNDk5  
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  FAGE = if(AGE >= 20) then exp(BETA_CL_AGE*(AGE-20)) 
    else 1 
  FMAT = 1/(1+(PCA/TM50)^(-HILL)) 
  GRP_CL = POP_CL * FSIZE * FAGE * FMAT 
 } 
 

GRP_CL can then be used in the definition of individual variables within the INDIVIDUAL_VARIABLES 
block. 

 

4.7.1 Defining model constants 
Model constants (model variables with constant values) may be defined in MDL within the 
GROUP_VARIABLES block. 

However, to ensure interoperability within the current SEE, constant values in the model should 
be defined as STUCTURAL_PARAMETERS and fixed to a value in the Parameter Object.  

For models expressed as systems of differential equations (DEQ block), model variables can be set 
to constant values in the MODEL_PREDICTION block, but this may be computationally inefficient in 
the target software implementation. 

4.8 RANDOM_VARIABLE_DEFINITION Block 
The RANDOM_VARIABLE_DEFINITION block defines the distribution of the random effects to be used in 
construction of mixed effects models. The RANDOM_VARIABLE_DEFINITION block defines random 
variables in terms of parametric distributions. 

 
It is assumed that all variables within the same block are defined for the same level of the model 
hierarchy. Separate RANDOM_VARIABLE_DEFINITION blocks should be used for each layer of the model 
hierarchy.The user specifies which level through the “(level = <name of variable associated 
with this level> )” syntax following the RANDOM_VARIABLE_DEFINITION block name.  
 
The following syntax is used to define random variables 

RANDOM_VARIABLE_DEFINITION( level = <VARIABILITY_LEVEL variable> ){ 
 
 <VARIABLE NAME > ~ <Distribution with arguments > 
} 
 

The RANDOM_VARIABLE_DEFINITION block supports probability distributions as specified in the 
ProbOnto14 knowledge base15. Typically for definition of  structural parameter and residual error random 
variability, Normal distributions will be used. The MDL distribution “Normal(…)” maps to either ProbOnto 
Normal1 or Normal2 depending on the parameterisation: 
 
MDL Name Argument name Argument 

Types 
ProbOnto 
distribution 

Normal mean 

sd 

Real 

Real 

Normal1 

14 Swat, MJ; Grenon, P; Wimalaratne, S. ProbOnto: ontology and knowledge base of probability 
distributions. Bioinformatics (2016); doi: 10.1093/bioinformatics/btw170 
15 https://sites.google.com/site/probonto/download  
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Normal mean 

var 

Real 

Real 

Normal2 

 
This means that the user does not need to remember which ProbOnto distribution uses which 
parameterisation for this frequently used distribution. 
 
An example of RANDOM_VARIABLE_DEFINTION for individual random effects is given below: 
 
 RANDOM_VARIABLE_DEFINITION(level=ID) { 
  ETA_CL ~ Normal(mean = 0, sd = PPV_CL) 
  ETA_V ~ Normal(mean = 0, sd = PPV_V) 
  ETA_KA ~ Normal(mean = 0, sd = PPV_KA) 
  ETA_TLAG ~ Normal(mean = 0, sd = PPV_TLAG) 
 } # end RANDOM_VARIABLE_DEFINITION  
 
In the code above, ETA_CL, ETA_V, ETA_KA and ETA_TLAG vary with each new value of ID. These 
variables are normally distributed with mean = 0 and standard deviation defined by the variability 
parameters. The distribution can also be defined using variances. Note that in the current MDL version, 
the use of standard deviation or variance must match what is specified for that parameter in the 
Parameters Object VARIABILITY block. 
 
Correlations and covariances between the ETAs are defined within the Parameter Object. This allows the 
user to test different correlation and covariance structures between variables without having to change 
the Model Object. Typically the random effect variables will be Normally distributed, so covariances and 
correlations between variables imply a multivariate-Normal distribution.  
 
In the example above, all random variability parameters are independent. To specify correlation or 
covariance between parameters, the user should specify either pairwise correlation or covariance 
between random variables or use a multivariate distribution. In contrast to the previous version of MDL 
where correlations and covariances were defined only in the Parameter Object, this version requires the 
user to specify correlations and covariances in the RANDOM_VARIABLE_DEFINITION block. This is to allow 
the Prior Object to define priors on parameters used in the Model Object. 
 
The following syntax is used to define correlation or covariance: 
 :: {type is <correlation / covariance>,  
  rv1 = <RANDOM_VARIABLE_DEFINITION variable>,  
  rv2 = <RANDOM_VARIABLE_DEFINITION variable>,  
  variable = <VARIABILITY_PARAMETERS parameter> } 
 
Note the use of the “anonymous list” using double colon “::” . This is used since we are assigning 
additional information to the variable defined in the VARIABILITY_PARAMETERS block. 
 
For example (UseCase1):  
 :: {type is correlation, rv1=ETA_CL, rv2=ETA_V, value=CORR_CL_V} 
 
Alternatively, the user can specify multivariate distribution(s) for parameters to specify the joint distribution 
of multiple random variability parameters. To do this, the user must specify the type of parameters in the 
STRUCTURAL_PARAMETERS (if required) and VARIABILITY_PARAMETERS blocks. Typically for multivariate 
distributions, there may be a vector of mean values, and a matrix of correlations or covariances. We can 
then use these to define the multivariate distribution using ProbOnto definitions. 
 
So if we assume that the random effects for CL, V and KA (ETA_CL, ETA_V and ETA_KA in the 
univariate case) come from a multivariate distribution then the distribution of the vector ETA_CL_V_KA is 
given as: 
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𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶_𝑉𝑉𝐾𝐾𝐾𝐾 = �
𝐸𝐸𝐸𝐸𝐸𝐸_𝐶𝐶𝐶𝐶
𝐸𝐸𝐸𝐸𝐸𝐸_𝑉𝑉
𝐸𝐸𝐸𝐸𝐸𝐸_𝐾𝐾𝐾𝐾

�~ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
0
0
0
� , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶_𝑉𝑉_𝐾𝐾𝐾𝐾� 

where PPV_CL_V_KA is a covariance matrix defining the variances and covariances of the random 
effects: 

𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶_𝑉𝑉_𝐾𝐾𝐴𝐴 = �
𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶_𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶_𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶_𝑉𝑉 𝑃𝑃𝑃𝑃𝑃𝑃_𝑉𝑉 𝐶𝐶𝐶𝐶𝐶𝐶_𝑉𝑉_𝐾𝐾𝐾𝐾
𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶_𝐾𝐾𝐾𝐾 𝐶𝐶𝐶𝐶𝐶𝐶_𝑉𝑉_𝐾𝐾𝐾𝐾 𝑃𝑃𝑃𝑃𝑃𝑃_𝐾𝐾𝐾𝐾

� 

 
Note that the ProbOnto distribution MultivariateNormal1 uses mean and covariance, while MultivariateNormal2 uses 
mean and correlation. 
 
For example (UseCase6_2): 
VARIABILITY_PARAMETERS { 
 PPV_CL_V_KA::matrix 
 PPV_TLAG 
 RUV_PROP 
 RUV_ADD 
} # end VARIABILITY_PARAMETERS  
  
RANDOM_VARIABLE_DEFINITION(level=ID) { 
 ETA_CL_V_KA ~ MultivariateNormal1(mean = [0,0,0],  
       covarianceMatrix = PPV_CL_V_KA) 
 ETA_TLAG ~ Normal(mean = 0, var = PPV_TLAG) 
 } # end RANDOM_VARIABLE_DEFINITION 
 
Similarly for the residual unexplained variability with mean 0 and a fixed variance of 1, we might have a 
RANDOM_VARIABLE_DEFINITION block as follows: 
 
 RANDOM_VARIABLE_DEFINITION(level=DV){ 
     EPS_Y ~ Normal(mean = 0, var = 1) 
 } 
 
To define between occasion variability we might have a RANDOM_VARIABLE_DEFINITION block as 
follows: 

RANDOM_VARIABLE_DEFINITION(level=OCC){ 
   eta_BOV_CL~ Normal(mean=0, var=BOV_CL) 
   eta_BOV_V~ Normal(mean=0, var=BOV_V) 
   eta_BOV_KA~ Normal(mean=0, var=BOV_KA) 
   eta_BOV_TLAG~ Normal(mean=0, var=BOV_TLAG) 
}# end RANDOM_VARIABLE_DEFINITION 

 

Note that in the above example blocks, ID, DV and OCC are declared as valid identifiers for the 
variability hierarchy through the VARIABILITY_LEVELS block assuming appropriate specification within 
the Data Object of DATA_INPUT_VARIABLES with “use is id”, “use is varLevel”  and “use is dv”   
for ID, OCC and DV (respectively). 

 

VARIABILITY_LEVELS{ 
   ID : { level=3, type  is parameter } 
   OCC : { level=2, type  is parameter } 
   DV : { level=1, type  is observation } 
} 
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The RANDOM_VARIABLE_DEFINITION block can also be used to explicitly define the distribution of 
individual variables, however if this method is used, then an anonymous list must be specified in the 
INDVIDUAL_VARIABLES block to refer to random variable defined in this way. Parameters defined in 
this way cannot be used with “type is linear” or “type is general” in the 
INDIVIDUAL_VARIABLES block.  

For example: 

RANDOM_VARIABLE_DEFINITION(level=ID) { 
 CL ~ LogNormal3(median = POP_CL, stdevLog = SD_LNCL) 

 … 

 } 

INDIVIDUAL_VARIABLES{ 

 :: {type is rv, variable=CL} 

 … 

} 

Covariates can be included via definition in the GROUP_VARIABLES block, but this may limit 
interoperability and translation of the model to target software. 

For example: 

See GROUP_VARIABLES block example above for definition of GRP_CL. 

RANDOM_VARIABLE_DEFINITION(level=ID) { 
 CL ~ LogNormal3(median = GRP_CL, stdevLog = SD_LNCL) 

 … 

 } 

 

The RANDOM_VARIABLE_DEFINITION block is also used to specify non-continuous outcome variables i.e. 
count, binary, categorical.  

The current version of MDL supports only Normal distributions for random effects. 

4.9 INDIVIDUAL_VARIABLES Block 
The INDIVIDUAL_VARIABLES block is used to express how the fixed effect variables (population 
parameters, covariates with their associated fixed effect parameters) and random effects (defined in 
the RANDOM_VARIABLE_DEFINITION block) combine to define the individual variables which will be 
used in the MODEL_PREDICTION block to calculate predictions for given inputs. If this is not a 
population model or if variables are completely defined through the GROUP_VARIABLES block then this 
block is not required. However, that might break interoperability with some tools like Monolix, which 
require the definition of individual parameters 

There are three principle ways of defining INDIVIDUAL_VARIABLES and these will be described below.  

The only way of defining INDIVIDUAL_VARIABLES that is currently supported for parameter 
estimation across  target software is the “linear after transformation” method described in section 
4.9.1 below. 
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4.9.1 Mixed effect model with linear fixed effects and normally 
distributed random effects  

In some cases it is possible to express the fixed effects of covariates for a population parameter as a 
linear model with normally distributed random effects, sometimes employing a simple transformation 
(log, logit etc.) to achieve this.  

We refer to this as a linear covariate model and this equates to the following mathematical definition: 

ℎ(𝜓𝜓𝑖𝑖) = ℎ�𝜓𝜓pop� +  𝛽𝛽 𝐶𝐶𝑖𝑖 + 𝜂𝜂𝑖𝑖 

ψi – Individual parameter 

ψpop – Typical or population mean parameter 

β – Fixed effects 

Ci – Covariates 

ηi – Random effect 

h – Transformation function – typically log, logit, probit etc. 

 

The MDL syntax for this form of specification is: 

<Individual parameter> 

  : {type is linear,  trans is <h>,  

  pop = <Population STRUCTURAL parameter>, 

  fixEff = [ {coeff = <Fixed Effect STRUCTURAL parameter for covariate>, 

  cov = <Covariate in COVARIATES block conforming to rules below>} , 

 … <Additional coefficient and covariate pairs as above> ], 

  ranEff = [ RANDOM_VARIABLE_DEFINITION parameter(s) ] ) 

 

The fixEff and trans arguments are optional.  

Note that the syntax has changed from <parameter> = linear(…) to <parameter> : {type is linear, …}. 
This change allows conditional assignment of list types to the parameter. So if the model for a 
parameter varies according to a covariate or variable value, then this can be reflected in the condition 
applied.  

Note that left hand side transformations of the individual parameters are no longer allowed. The 
transformation specified in the trans argument applies to both the left hand side and right hand side 
of the equation. The ranEff argument expects a vector of random variables. If there is only one random 
variable the square brackets are not required. 

Note that h(<Individual parameter>) on the left hand side of the equation is a function whereas the <h> 
in “trans is <h>” is an enumerated type. These should be the same transformation. If a transformation 
is used, then the Individual parameter (left hand side of the equation) is implicitly back-transformed 
for use in later calculations, for example in the MODEL_PREDICTION block. 

For example (UseCase1):  

CL : {type is linear, trans is ln, pop = POP_CL,  

  fixEff = [{coeff=BETA_CL_WT, cov=logtWT}] ,  

  ranEff = ETA_CL } 
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Using this construct for individual variables equates to the MU referencing approach in NONMEM and 
the standard definition of individual parameters in Monolix. 

As discussed in the documentation of the Data Object defining covariates (section 3.3.5.1) certain 
constraints are placed on the type of covariate used in this form of specification. When covariates are 
defined within the Model Object COVARIATES block and used in the specification of 
INDIVIDUAL_PARAMETERS using the linear( …, fixEff=[{coeff=<coefficient>, cov = 
<covariate>}] ) construct, they must have particular properties: 

• They must be constant within an individual or constant within an occasion. 
• They will only be allowed simple transformations within the model e.g. centering on a median 

/ mean and/or log transformation, logit transformation.  
• The transformation cannot depend on another covariate. 
• Statistical models (random effects) on covariates are not supported. 

If a categorical covariate is used, then the catCov argument in fixEff should refer to the appropriate 
category of the covariate. For example (UseCase5): 

CL : {type is linear, trans is ln,  
  pop = POP_CL,  
  fixEff = [ 
         {coeff = BETA_CL_WT, cov = logtWT}, 
         {coeff = POP_FCL_FEM, catCov = SEX.female }, 
         {coeff = BETA_CL_AGE, cov = tAGE} 
         ],  
  ranEff = ETA_CL } 
 

If the categorical covariate has more than k>2 categories then the user needs to specify k-1 
dichotomous “dummy” covariates to specify the factor levels and appropriate contrasts (between level 
k and an appropriate comparison value). For example when adding GENOTYPE as a categorical 
covariate, the user may want to compare each category of GENOTYPE to a suitable reference value of 
the covariate. In this case all of the “dummy” dichotomous comparison covariates should be included 
in the model in one step. 

If between occasion variability is specified in a RANDOM_VARIABLE_DEFINITION block then the 
associated random effects can be specified in a vector form of the ranEff attribute. These will be 
added into the linear equation. For example (UseCase8): 

CL : {type is linear, trans is ln, pop = POP_CL,  

  fixEff = [{coeff=BETA_CL_WT, cov=logtWT}] ,  

  ranEff = [eta_BSV_CL, eta_BOV_CL ]} 

4.9.2 General mixed effect model with Gaussian random effects.  
The second formulation for the INDVIDUAL_PARAMETERS block uses variables defined in the 
GROUP_VARIABLES block and assumes that the random effect is additive i.e. is Gaussian (Normally 
distributed) or Gaussian after transformation. 

We refer to this as a “general or Gaussian after transformation” model and the associated 
mathematical representation is: 

ℎ(𝜓𝜓𝑖𝑖) = 𝐻𝐻(𝛽𝛽,  𝐶𝐶𝑖𝑖) +  𝜂𝜂𝑖𝑖 

ψi – individual parameter 

β – Fixed effects 
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Ci – Covariates 

ηi – Random effect(s) 

H – Arbitrary function 

h – Transformation function – log, logit, probit. 

Where 𝐻𝐻(𝛽𝛽,𝐶𝐶𝑖𝑖) is defined in the GROUP_VARIABLES block.  

The MDL syntax for this form of specification is: 

<Individual parameter> 

  : {type is general,  

    grp = <GROUP_VARIABLES defined variable >, 

  trans is <ln / logit / probit>, 

    ranEff = [ RANDOM_VARIABLE_DEFINITION parameter(s) ] ) 

 

The trans argument is optional. 

Note that there is no “trans is” function argument on the right hand side. If the trans argument is 
used, then it is assumed that appropriate transformations have been made in the GROUP_VARIABLES 
block or in the assigned value for the grp attribute to ensure that the fixed effect and random effect 
are additive and on the correct scale given the transformation. 

For example, for the GROUP_VARIABLES defined in section 4.7 above: 

CL : {type is general, grp = ln(GRP_CL),  

  trans is ln, 

  ranEff = ETA_CL) 

This corresponds to the following equation for CL: 

ln(𝐶𝐶𝐶𝐶) = ln(𝐺𝐺𝐺𝐺𝑃𝑃𝐶𝐶𝐶𝐶) + 𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶  

which, after back-transformation is equivalent to: 

𝐶𝐶𝐶𝐶 = 𝐺𝐺𝐺𝐺𝑃𝑃𝐶𝐶𝐶𝐶 ∗ exp (𝐸𝐸𝐸𝐸𝐴𝐴𝐶𝐶𝐶𝐶) 

4.9.3 Mixed effect model defined by equations 
The individual variables can also be defined using expressions by combining parameters with variables 
defined in GROUP_VARIABLES and random effects . 

For example: 

CL = POP_CL * exp(ETA_CL) 

Or (using a variable GRP_CL defined in the GROUP_VARIABLES block as defined above) 

CL = GRP_CL *  exp(ETA_CL) 

It is also possible to define fixed and random effect expressions as follows: 

CL=POP_CL*(WT/70)^0.75*exp(eta_PPV_CL) 

 

Which can be log transformed into a linear form of mixed effect model like this: 

CL=exp(ln(POP_CL)+ 0.75*ln(WT/70)+ eta_PPV_CL) 
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However, note that while it is possible for the user to “see” that the equation above is linear in the 
fixed and random effects, it is not possible for the MDL-DE to determine this. To specify linear models 
we must explicitly do so using the {type is linear, … } construct described in section 4.9.1. 

4.9.4 INDIVIDUAL_VARIABLES without inter-individual variability 
For interoperability reasons, parameters defined in the STRUCTURAL_PARAMETERS block without 
associated variability i.e. where the individual value is the same as the parameter value, should be 
defined within the INDIVIDUAL_VARIABLES block. If the model parameter is constrained to be positive, 
then an appropriate transformation should be used to ensure a positive value.  

4.9.5 INDIVIDUAL_VARIABLES where the variable is defined in the 
RANDOM_VARIABLE_DEFINITION block. 

As discussed in section 0 above, if the individual variable is defined completely via a distribution in the 
RANDOM_VARIABLE_DEFINITION block, then an anonymous list must be used to declare the variable  
within the INDIVIDUAL_VARIABLES block. 

The syntax for the anonymous list is: 

 :: {type is rv, variable = <RANDOM_VARIABLE_DEFINITION variable>} 

4.9.6 Conditional assignment of INDIVIDUAL_VARIABLES 
It is possible to apply conditional handling to the assignment of INDIVIDUAL_VARIABLES. Note that the 
conditioning occurs on the RIGHT HAND SIDE of the expression ONLY. The conditioning statement 
should follow the conventions described in section 9.1.4.4.  

The syntax is as follows: 

 <Individual variable> 

    : if(condition1) then { INDIVIDUAL_VARIABLE list 1 } 

       elseif(condition2) then { INDIVIDUAL_VARIABLE list 2 } 

      else { INDIVIDUAL_VARIABLE list 3 } 

 

Note the use of an “else” statement to ensure that <Individual parameter> is always assigned a value. 

For example: 

 CL : if(RF==RF.normal) {type is linear, trans is ln,  

    pop = POP_CL,  

    fixEff = {coeff = BETA_CL_WT, cov = logtWT}, 

    ranEff = ETA_CL } 

  else {type is general,  

   grp = ln(GRP_CL),  

   trans is ln, 

   ranEff = ETA_CL } 

In the above, the expression for individual Clearance is conditional on whether the subject’s renal 
function (RF) is “normal” or not. The user would need to have defined a suitable model for GRP_CL in 
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the GROUP_VARIABLES block. (RF is a categorical data variable that has a symbolic value of “normal” 
and other categories which are not used in this example). 

Please also see sections 9.1.4.4 and 9.1.4.5 for further information on handling of conditional 
statements. 

4.9.7 INDIVIDUAL_VARIABLES definitions in practice. 
As has been discussed above, to facilitate interoperability we strongly suggest that users try to 
formulate their models using the {type is linear, … } form shown in section 4.9.1 with the caveat 
included about the forms of covariate relationships that can be used within this construct.  

In some cases, users may have to consider how their model is constructed more carefully. For example, 
in a pharmacodynamic model: 

  PD = PD_BASELINE + PD_BETA*CP + ETA_PD 
 

It may be tempting to try to write this as a {type is linear, … } relationship with CP as a covariate, 
but recall that covariates may not be time-varying, and CP would almost certainly break this rule. 

If we encode GRP_PD  = POP_BASELINE + POP_BETA*CP as a GROUP_VARIABLE and then add ETA_PD 
in INDIVIDUAL_VARIABLES using the {type is general, … } form then the GRP_PD is also time-varying. 

 INDIV_PD : {type is linear,  pop = GRP_PD, ranEff = [ETA_PD]) 
 

However if we break the above model into components, then we can use {type is linear, … } to 
express an individual baseline 

 INDIV_BASE : {type is linear,  pop = POP_BASELINE, ranEff = [ETA_BASE]) 
 INDIV_BETA : {type is linear,  pop = POP_BETA, ranEff = [ETA_BETA]) 
 

We can then move the linear relationship with CP to the MODEL_PREDICTION block 

MODEL_PREDICTION{ 

 PD = INDIV_BASE + INDIV_BETA*CP 

} 

Using the INDIVIDUAL_VARIABLES block to define individual parameters which are then used in 
MODEL_PREDICTION should allow most models to be interoperable.  

4.10 MODEL_PREDICTION Block 
The MODEL_PREDICTION block is where the structural model predictions are defined. Calculations use 
mathematical expressions that may involve the population parameters (structural) as well as group and 
individual variables (parameters).  

If a MODEL_PREDICTION block is not supplied this is not an error but requires that any prediction 
referred to in the OBSERVATION blocks has been defined using variables in a GROUP_VARIABLES or 
INDIVIDUAL_VARIABLE block. 

For example below we present the MODEL_PREDICTION block using variables DOSE, V, CL, V and TIME. 

MODEL_PREDICTION{ 

DOSE::dosingVar  # recall that DOSE must be declared before use in analytical models. 

 CONC=DOSE/V*exp(-CL/V*TIME) 

} 
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If a DEQ sub-block is specified then variables calculated within the DEQ sub-block can be referred to 
outside of this block to calculate the model prediction. An example is given below. 

To ensure interoperability, any variable used in the MODEL_PREDICTION block must be either: 

• the independent variable 
• defined in MODEL_PREDICTION 
• declared in INDIVIDUAL_VARIABLES using {type is linear, … } 
• defined as “use is variable” in the DATA_INPUT_VARIABLES block of the Data Object 

This implies in particular that STRUCTURAL_PARAMETERS, VARIABILITY_PARAMETERS, 
GROUP_VARIABLES and random variables defined in RANDOM_VARIABLES_DEFINITION cannot be used 
in MODEL_PREDICTION. 

4.10.1 DEQ Sub-block 
Use of a DEQ sub-block is optional – differential equations may be used anywhere in the 
MODEL_PREDICTION block – but it is encouraged to use this sub-block for clarity and readability of the 
resulting code.  

The DEQ sub-block specifies the structural model through differential equations. The general form is  

<VARIABLE> : { deriv = <expression>, init = <Real number>, x0 = <Real number> } 

The DEQ sub-block combines equations and differential equations and the resulting system of equations 
is integrated across the independent variable, usually time. 

init = <Real number> is the initial value of the differential equation 

x0 = <Real number> is the starting value of the integrator. For most systems involving time, this is 
zero. 

By default, init = 0 and x0 = 0. If the default is to be used, these arguments can be dropped from 
specification of the differential equation.  

For example: 

MODEL_PREDICTION { 
 DEQ{ 
  RATEIN = if(T >= TLAG) then GUT * KA   
     else 0 
  GUT : { deriv =(- RATEIN), init = 0, x0 = 0 } 
  CENTRAL : { deriv =(RATEIN - CL * CENTRAL / V) }  
 } 
    CC = CENTRAL / V  
} # end MODEL_PREDICTION 

4.10.2 On Tlag and Bioavailability 
Since MDL has no reserved variable names, there is no mechanism for target software to identify 
lagtime and bioavailability. . Models with lag times and bioavailability must use the COMPARTMENT sub-
block to specify these input attributes. 

 

4.10.3 COMPARTMENT Sub-block 
The COMPARTMENT sub-block is intended to provide the user with a modular approach to describe PK 
processes through definition of the drug input, distribution, and elimination processes. The functions 
defined are influenced by the PK macros approach in Monolix. The table below shows how the 
Compartment definitions in MDL correspond to PK Macros as defined in Monolix. 
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MDL Compartment Monolix PK Macros 

direct iv 

depot absorption 

elimination elimination 

distribution peripheral 

effect effect 

transfer transfer 

compartment compartment 

 

The major differences over the implementation in Monolix are that in MDL, the “from” and “to” 
attributes define the links between compartments and processes and that there are no reserved names 
for compartments or variables e.g. using “K12” and “K21” as variable names confers no special 
meaning to the use of these variables. 

The current version of MDL translates COMPARTMENT specifications into differential equations in 
NONMEM and to PK Macros in Monolix. Future versions may be able to identify systems of compartments 
and translate these to closed-form solutions in target software. 

COMPARTMENT definitions are translated into PK Macros in Monolix and where possible 
they are mapped to ADVAN closed-form solutions in NONMEM. 

COMPARTMENTS sub-block processes are specified as lists with attributes depending on the processes 
being described. 

4.10.3.1 Input & absorption 
There are two COMPARTMENT block processes describing input to the system (typically drug input). 
These are direct and depot. direct defines bolus or zero-order input processes, while depot 
describes first-order, zero-order or transit chain drug input processes.  

Input format is of the form: 

<VARIABLE NAME> : { type is <depot / direct>,  

   to = <VARIABLE>, 

   <other arguments> } 

The other arguments depend on the process being described. The table below describes the possible 
combinations of attributes for different input and absorption processes. 

Compartment Type Attribute Combination 

Direct to, modelDur(O), modelRate(O), tlag(O), finput(O) 

Depot to, ka, tlag(O), finput(O) 

 to, modelDur, tlag(O), finput(O) 

 to, ka, ktr, mtt 

 to, modelDur, ktr, mtt 

(O) - Optional attribute 

INPUT_KA : {type is depot, to=CENTRAL, ka=KA, tlag=ALAG1, finput=F1} 
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4.10.3.2 Distribution processes 
MDL defines drug distribution (movement of drug between compartments) through COMPARTMENT block 
definitions with type compartment, distribution. 

“type is compartment” is used to define PK compartments which have an associated input and 
elimination process. Peripheral compartments with “type is distribution” will not have “type is 
input” or “type is elimination” processes associated with them.  

<VARIABLE NAME> : { type is compartment, modelCmt =<number> } 

The modelCmt argument is not used. 

For example: 

CENTRAL : {type is compartment, modelCmt=2} 
 

Compartments where the transfer of drug in and out is defined through model variables have “type is 
distribution”. 

<VARIABLE NAME> : {type is distribution, from = <VARIABLE NAME>, kin = <VARIABLE 
NAME>, kout = <VARIABLE NAME>, modelCmt =<number> } 

For example, to specify a peripheral compartment in a two compartment PK model: 

PERIPHERAL : {type is distribution, modelCmt=3, from=CENTRAL, kin=Q/V2,   
  kout=Q/V3} 

 

A “type is effect” process provides a means to describe the transfer of amounts from a given 
compartment to an effect compartment e.g. for use with PD models. 

<VARIABLE NAME> : {type is effect, from = <VARIABLE NAME>, keq = <VARIABLE NAME>} 

 

Compartment Type Attribute Combination 

distribution modelCmt, from, kin, kout 

compartment modelCmt 

effect modelCmt, from, keq 

 

4.10.3.3 Elimination and transfer processes 
Elimination is defined via a list with “type is elimination” and specification of the compartment from 
which drug is eliminated along with variable names for the volume of distribution in the compartment 
from which drug is eliminated and the micro constant or apparent clearance from the compartment. 

If the amount of eliminated drug is not of interest, it is not necessary to name this process. If this is 
the case, an anonymous list must be used:  

:: { type is elimination, from = <VARIABLE NAME>, v = <VARIABLE NAME>, <k / cl> = 
<VARIABLE NAME>, modelCmt =<number> } 

The modelCmt argument is not used. 

For example in the one compartment model: 

:: {type is elimination, modelCmt=2, from=CENTRAL, v=V, cl=CL} 
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Note that the v argument refers to the volume of distribution in the compartment defined by the from 
argument. 

A “type is transfer” process has also been provided which defines the one-way transfer of drug 
amounts from one compartment to another. 

<VARIABLE NAME> : {type is transfer, from = <VARIABLE NAME>, to = <VARIABLE NAME>, kt = 
<VARIABLE NAME> , modelCmt =<number>} 

For example: 

:: {type is transfer, modelCmt=2, from=LATENT, to=CENTRAL, kt=K23} 
 

Compartment 
Type 

Attribute Combination 

elimination from, v, k 

 from, v, cl 

 from, vm, km 

transfer from, to, kt 
 

4.11 Combining COMPARTMENTS and DEQ blocks 
It is possible to use COMPARTMENTS to describe the input processes for differential equations in the DEQ 
block. Using the “type is depot” or “type is direct” compartments allows the user to specify lag 
time and bioavailability (tlag and finput) which will translate to appropriate terms in target software 
e.g. ALAGn and Fn in NM-TRAN. If the COMPARTMENTS specification is not used then model parameters 
are treated in a very general way and there is no way of mapping these to target tools to implement 
these input attributes.  

If the COMPARTMENT sub-block is not used then delay absorption processes and/or bioavailability needs 
to be explicitly encoded.  

For example in UseCase4 differential equations are used to describe IV and oral administration. The 
time of dosing DT is passed either from the data or via DATA_DERIVED_VARIABLES (see section 2.5): 

MODEL_PREDICTION { 
  DT 
  DEQ{ 
    RATEIN = if(T-DT >= TLAG) then GUT * KA 
   else 0 
    GUT : { deriv =(- RATEIN), init = 0, x0 = 0 } 
    CENTRAL : { deriv =(RATEIN * FORAL - CL * CENTRAL / V), init = 0, x0 = 0 }  
 } 
  CC = CENTRAL / V  
  } # end MODEL_PREDICTION 

In the above example, note that there is a discontinuity in RATEIN which is not well handled with 
differential equations. Note also that the model does not handle multiple doses since then DT (time of 
dose) and hence RATEIN would be reset to zero for each new dose. 

To alleviate this problem, we can use COMPARTMENTS with DEQ to handle the input processes 
correctly. The code below shows how to include lag time and bioavailability  in a model using 
differential equations (UseCase4_2): 
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MODEL_PREDICTION { 
  COMPARTMENT{ 
    INPUT_KA      : {type is depot, to=CENTRAL, ka=KA, finput=FORAL, tlag=TLAG} 
    INPUT_CENTRAL : {type is direct, to = CENTRAL} 
    } 
  DEQ{ 
    CENTRAL : { deriv =( - CL * CENTRAL / V), init = 0, x0 = 0 }  
  } 
  CC = CENTRAL / V  
} # end MODEL_PREDICTION 
 

(Note that this model is not exactly equivalent to UseCase4 which does not allow for superposition of 
dosing). Note the first-order input to the CENTRAL compartment (INPUT_KA) is “type is depot” while 
the bolus or zero-order rate input  (INPUT_CENTRAL) is “type is direct”. 

The model corresponding to UseCase4 is shown below (UseCase4_3). In this case there is an explicit 
differential equation for the depot compartment (GUT) 

MODEL_PREDICTION { 
  COMPARTMENT{ 
    INPUT_KA      : {type is direct, to = GUT, finput=FORAL, tlag=TLAG} 
    INPUT_CENTRAL : {type is direct, to = CENTRAL} 
    } 
  DEQ{ 
    GUT : { deriv =(- GUT * KA), init = 0, x0 = 0 }   
    CENTRAL : { deriv =(GUT * KA  - CL * CENTRAL / V), init = 0, x0 = 0 }  
    } 
  CC = CENTRAL / V  
  } # end MODEL_PREDICTION 
 

In the code above, note that both administrations use “type is direct”, but the oral administration 
(INPUT_KA) has finput and tlag specified. In contrast to the above, the direct input would exactly 
correspond to the DEQ specification in UseCase4, however the TLAG in UseCase4 is treated as a general 
parameter, while the TLAG in UseCase4_3 will be translated to ALAGn in NMTRAN. 

4.12 OBSERVATION Block 
The OBSERVATION block provides the definition of the outcome variable using the prediction from the 
MODEL_PREDICTION block and/or in the case of continuous data RANDOM_VARIABLE_DEFINITION at the 
observation level. Any cCalculations or equations needed for this definition should be placed in the 
MODEL_PREDICTION block can be defined in the OBSERVATION block e.g. calculation of weights for 
“type is userDefined” error models.  

If more than one outcome is specified  then we specify each outcome separately within the 
OBSERVATION block. It is not necessary to have conditional assignment of outcomes to a single outcome 
variable depending on the variable with “use is dvid”. Conditional assignment to outcome definitions 
is possible if the outcome depends on a covariate or calculated variable. However it is not necessary to 
conform multiple outcomes to a single observation variable name e.g. Y. 

In the current version of MDL, only the standard residual error functions defined below are 
supported. Equation based definitions of the outcomes are not supported. 
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4.12.1 Continuous outcomes 
For continuous outcomes the OBSERVATION block defines how a variable from the MODEL_PREDICTION 
block and RANDOM_VARIABLE_DEFINITION providing the residual unexplained random variables are 
combined in a function to define the outcome. 

The mathematical representation of the outcome variable is (after Lavielle, 2014) 

ℎ�𝑦𝑦𝑖𝑖𝑖𝑖� = ℎ �𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�� + 𝑔𝑔�𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�, 𝜉𝜉�𝜀𝜀𝑖𝑖𝑖𝑖 

Where  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑗𝑗𝑗𝑗ℎ observation for subject 𝑖𝑖 

h = Transformation of the outcome to ensure that the resulting function is an additive function of f and 
g. Specfied in MDL error models described below using “trans is <h>”. Left hand side transformation is 
specified using the Boolean lhsTrans. 

f = structural model prediction from the MODEL_PREDICTION block. Specified in the MDL error models 
described below through the “prediction” argument. 

g = functional definition of the residual error model. Specified in the MDL error models through the 
“type is additiveError | proportionalError | combinedError1 | combinedError2” 

𝜓𝜓𝑖𝑖 = individual parameters defined in the INDIVIDUAL_VARIABLES block 

xij = covariates and regression variables e.g. time, concentration etc. 

𝜉𝜉 = parameters of the residual error model defined in the VARIABILITY_PARAMETERS block and 
referred to in the appropriate “additive” and “proportional” arguments.  

𝜀𝜀𝑖𝑖𝑖𝑖= residual error defined in RANDOM_VARIABLE_DEFINITION block and referred to in the MDL error 
models described below through the “eps” argument. 

The syntax for definition of continuous outcome variables is  

< OUTCOME VARIABLE NAME> : {type is  additiveError | proportionalError | combinedError1 | 
combinedError2 | userDefined,  

     <additional arguments defined in table below> } 

The following residual error model functions are defined, as described in MDL Language Reference 
section 2.21 and reiterated here.  

Name Return 
Type 

Argument name Argument 
Types 

additiveError Real trans (Optional) 

lhsTrans 

additive 

prediction 

eps 

Builtin 

Boolean 

Real 

Real 

Real 

proportionalError Real trans (Optional) 

lhsTrans 

proportional 

prediction 

eps 

Builtin 

Boolean 

Real 

Real 

Real 

51 

 



combinedError1 Real trans (Optional) 

lhsTrans 

additive 

proportional 

prediction 

eps 

Builtin 

Boolean 

Real 

Real 

Real 

Real 

combinedError2 Real trans (Optional) 

lhsTrans 

additive 

proportional 

prediction 

eps 

Builtin 

Boolean 

Real 

Real 

Real 

Real 

userDefined Real value 

weight 

prediction 

Real 

Real 

Real 

 

combinedError1 defines the following model: 

ℎ�𝑦𝑦𝑖𝑖𝑖𝑖� = ℎ �𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�� + �𝑎𝑎 + 𝑏𝑏𝑏𝑏�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�� 𝜀𝜀𝑖𝑖𝑖𝑖 

combinedError2 defines the following model: 

ℎ�𝑦𝑦𝑖𝑖𝑖𝑖� = ℎ �𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�� + �𝑎𝑎2 + 𝑏𝑏2𝑓𝑓�𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖�𝜀𝜀𝑖𝑖𝑖𝑖 

the lhsTrans Boolean argument allows the user to apply transformations to the DV without having to 
transform the data column prior to analysis.  

As with the {type is linear, …} and {type is general,…} definitions in the INDIVIDUAL_VARIABLES 
block, we use defined types here to make explicit the relationships between predictions and residual 
random variable terms to facilitate interoperability between target software. A more general equation 
form could be used, but this would not necessarily translate successfully to all target software for 
estimation. 

Use {type is userDefined, … } to specify an arbitrary relationship between prediction, the residual 
error random variable which is typically Normal(0,1), and the  with associated function g(.)  defined 
above. Using this form ensures that correct calculation of the weighted residuals can be calculated.  

The current version of MDL does not support definition of outcomes with arbitrary functions of 
variables and random variables. Any equations written in the OBSERVATION block are treated as 
variables to be used in definition of the observation through a list definition as described above 
(including UserDefined). If a list definition is not used, then the observation equation may not be 
translated correctly to the target software tool.  

4.12.2 Discrete data 
Discrete data outcomes are described by referencing a suitable distribution for the outcome. In this 
version of MDL we assume that the parameters of the relevant distributions are supplied either in the 
data, for example the number of trials, N, in a binomial distribution, or are defined in the 
MODEL_PREDICTION block. 
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In this version of MDL we assume an identity link for all models – that is the parameter supplied to the 
distribution must be on the appropriate scale for that distribution – the Poisson rate parameter must 
have a positive value, probabilities for binary and categorical distributions must be on the scale (0,1). 

Count, discrete, categorical outcomes must be specified within the RANDOM_VARIABLE_DEFINITION 
block for the dv level via a suitable ProbOnto distribution (see also section 0). The random variable is 
then declared in the OBSERVATION block via an anonymous list, as has been seen previously when 
defining individual variables via the RANDOM_VARIABLE_DEFINITION block. Since continuous outcomes 
have a residual error specified at the DV level, it is inferred that the outcome defined in the 
OBSERVATION block is at the DV level of variability. However for other types of data, it is less clear 
that this is the case. Thus we must use RANDOM_VARIABLE_DEFINITION to define these outcomes using 
ProbOnto definitions and then provide additional information in the OBSERVATION block to assign 
additional attributes. 

The syntax is as follows: 

RANDOM_VARIABLE_DEFINITION(level=DV){ 
   <outcome variable> ~ <ProbOnto distribution> 
  } 
 
   OBSERVATION{ 
   :: {type is <count/discrete/categorical>, variable = <outcome variable>} 
   }# end ESTIMATION 

See below for examples pertaining to specific outcome types. 

4.12.2.1 Count data 
For count data, we have the following syntax: 

RANDOM_VARIABLE_DEFINITION(level=DV){ 
  <variable> ~ <ProbOnto distribution for count data e.g. Poisson1> 
  } 
 
 OBSERVATION{ 
   :: {type is count, variable = <variable>} 
   }# end ESTIMATION 
 

For example (also showing the appropriate INDIVIDUAL_VARIABLES, MODEL_PREDICTION and 
OBSERVATION blocks) (UseCase11) 

    
INDIVIDUAL_VARIABLES{ 
   BASECOUNT : {type is linear, trans is ln, pop = POP_BASECOUNT, ranEff =   
    eta_PPV_EVENT } 
   BETA = POP_BETA 
  }# end INDIVIDUAL_VARIABLES 
 
 MODEL_PREDICTION{ 
   lnLAMBDA=ln(BASECOUNT) + BETA*CP 
   LAMBDA = exp(lnLAMBDA) 
   } 
 
 RANDOM_VARIABLE_DEFINITION(level=DV){ 
   Y ~ Poisson1(rate=LAMBDA) 
  } 
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 OBSERVATION{ 
   :: {type is count, variable = Y} 
   }# end ESTIMATION 
 

Note in the above example that the BASECOUNT variable is specified using the linear function and a 
natural log transformation on both sides to ensure that BASECOUNT is positive. The linear relationship 
with CP (plasma concentration) is defined within the MODEL_PREDICTION block. We cannot use CP as a 
covariate in the linear(…) function as CP varies with time and so is regarded as a regressor rather than 
a covariate. In UseCase11 since there is no model for the pharmacokinetics we use CP as the 
independent variable (IDV) in the model and “use is idv” in the DATA_INPUT_VARIABLES block. We 
also take exponential of lnLAMBDA to ensure that the variable LAMBDA is on the positive scale before 
using this in the Poisson distribution. 

This is an example where a little consideration of the random effects and model prediction can 
facilitate interoperability. Writing an equation for the INDVIDUAL_VARIABLES we may have defined  

INDIVIDUAL_VARIABLES{ 
   lnLAMBDA = ln(POP_BASECOUNT) + BETA*CP + eta_PPV_EVENT 
   } 

Using this formulation of the model though would not guarantee interoperability with some target 
software for estimation since the equation for lnLAMBDA is user-defined. 

In the current version of MDL, only the Poisson distribution can be used to specify count data. In future 
versions of MDL many more distributions will be available through the Prob-Onto distribution 
specification in PharmML. 

There are many distributions defined in ProbOnto which will describe count data. The diagram below 
illustrates a few of these and relationships between them as described in the ProbOnto Knowledge Base 
(www.probonto.org) 
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4.12.2.2 Binary data 
Similar to count data above, we define the binary outcome and its distribution in a 
RANDOM_VARIABLE_DEFINITION block at the observation level of variability. Note how we define the 
names of the categories on the left hand side, and then the probability distribution defines the 
likelihood of the second category. 

RANDOM_VARIABLE_DEFINITION(level=DV){ 
  Y withCategories {<category1>,<category2>}    
     ~ <ProbOnto distribution e.g. Bernoulli | Binomial> 
  } 

For example (again, showing the INDIVIDUAL_VARIABLES, MODEL_PREDICTION and OBSERVATION blocks 
to show the model construction): 

RANDOM_VARIABLE_DEFINITION(level=ID){ 
  eta_PPV_EVENT ~ Normal(mean=0, var=PPV_EVENT ) 
  }# end RANDOM_VARIABLE_DEFINITION 
  
INDIVIDUAL_VARIABLES{ 
  indiv_BASE : {type is linear, pop= POP_BASEP,  
   ranEff=[eta_PPV_EVENT], trans is logit} 
  }# end INDIVIDUAL_VARIABLES 
 
MODEL_PREDICTION{ 
  LP = logit(indiv_BASE) + POP_BETA*CP 
  P1 = invLogit(LP) 
  }# end MODEL_PREDICTION 
 
RANDOM_VARIABLE_DEFINITION(level=DV){ 
  Y withCategories {none, event}   ~ Bernoulli1(probability=P1) 
  } 
 
OBSERVATION{ 
  :: {type is discrete, variable = Y } 
  }# end ESTIMATION 

Note that the INDIVIDUAL_VARIABLES block defines the individual baseline by combining the 
population parameter and the random effect. Note also that this specification uses a logit 
transformation to ensure that the individual baseline indiv_BASE variable is on the (0,1) probability 
scale. Then, the linear regression with plasma concentration (CP) is defined in the MODEL_PREDICTION 
– Note that CP is not a covariate. Finally LP is back-transformed to the probability scale to give variable 
P1 which is the probability of an event to be used in the Bernoulli distribution. By defining how the 0,1 
in the data correspond to named events {none, event} it is easier to understand exactly what category 
is being modelled. 

An alternative distribution for the same model is the Binomial distribution with one trial: 

RANDOM_VARIABLE_DEFINITION(level=DV){ 
  Y withCategories {none, event}   ~ Binomial1(numberOfTrials=1, probability=P1) 
  } 
 
OBSERVATION{ 
  :: {type is discrete, variable = Y } 
  } # end of OBSERVATION  
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4.12.2.3 Categorical data 
Again, similar to count and binary data, the syntax for Categorical data outcomes is: 

RANDOM_VARIABLE_DEFINITION(level=DV){ 
  <variable> withCategories{ <category1>, …, <categoryk> }  
  ~  <ProbOnto distribution for categorical data  
   e.g. CategoricalNonordered1 | CategoricalOrdered1> 
  } 
 
OBSERVATION{ 
    :: {type is categorical, variable=<variable>} 
  } 
 

For example (UseCase13_1): 

GROUP_VARIABLES{ 
  B0 = Lgt0 
  B1 = B0 + Lgt1 
  B2 = B1 + Lgt2 
  } 
    
INDIVIDUAL_VARIABLES{ 
  indiv_B0 : {type is general, grp=B0, ranEff = eta_PPV_EVENT} 
  indiv_B1 : {type is general, grp=B1, ranEff = eta_PPV_EVENT} 
  indiv_B2 : {type is general, grp=B2, ranEff = eta_PPV_EVENT} 
  }# end INDIVIDUAL_VARIABLES 
 
MODEL_PREDICTION{ 
  EDRUG = Beta * CP 
   
  A0 = indiv_B0 + EDRUG 
  A1 = indiv_B1 + EDRUG 
  A2 = indiv_B2 + EDRUG 
          
  P0 = invLogit(A0) 
  P1 = invLogit(A1) 
  P2 = invLogit(A2) 
    
  Prob0 = P0 
  Prob1 = P1 - P0 
  Prob2 = P2 - P1 
  Prob3 = 1 - P2 
 }# end MODEL_PREDICTION 
 
RANDOM_VARIABLE_DEFINITION(level=DV){ 
  Y withCategories{ none, mild, moderate, severe } ~ 
 CategoricalOrdered1(categoryProb=[Prob0, Prob1, Prob2, Prob3]) 
  } 
 
OBSERVATION{ 
  :: {type is categorical, variable=Y} 
  } 
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In the above code, the cutpoints between categories are defined in the GROUP_VARIABLES block (B0, 
B1, B2) and individual values for these are defined in the INDIVIDUAL_VARIABLES block. The linear 
effect of CP (plasma concentration) is defined in the MODEL_PREDICTION block and this is added to the 
individualised cutpoints (A0, A1, A2). These are then back-transformed to the probability scale (P0, P1, 
P2) and the ordered categorical model is defined by calculating the probability of each category as the 
difference from the previous category – Prob0, Prob1, Prob2, Prob3. 

4.12.3 Time to event data 
Time to event (TTE) models are modelled by specifying the hazard function. The PharmML to target 
software tool converters handle the translation of the hazard specification to target tool 
implementation. For some software this involves calculation of the survival function and associated 
likelihood. 

For an arbitrary hazard function λ(t): 

Hazard function 𝜆𝜆(𝑡𝑡) 

Cumulative hazard function Λ(𝑎𝑎, 𝑏𝑏) =  � 𝜆𝜆(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
 

Survival function 𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = 𝑒𝑒−Λ(𝑡𝑡0,𝑡𝑡) 

Probability density function 𝑝𝑝(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)𝑒𝑒−Λ(𝑡𝑡0,𝑡𝑡) 

Cumulative distribution function 𝑃𝑃(𝑇𝑇 < 𝑡𝑡) = � 𝑝𝑝(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

 

For an introduction to TTE models see Holford (2013) and for a tutorial in implementation in NONMEM 
and Monolix see Holford and Lavielle, (2011).  

The MDL syntax for time to event outcomes is : 

<OUTCOME VARIABLE NAME> : {type is tte,  

       hazard = <VARIABLE>  

} 

For example (UseCase14.mdl): 

INDIVIDUAL_VARIABLES{ 
  BTATRT = POP_BTATRT 
  H_BASE = POP_HBASE 
  } 
    
MODEL_PREDICTION{ 
  HBASE=H_BASE/365 
  HAZTRT=BTATRT*TRT 
  HAZ = HBASE * (1+HAZTRT) 
  }# end MODEL_PREDICTION 
 
OBSERVATION{ 
  Y : {type is tte, hazard = HAZ } 
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  }# end ESTIMATION 
 
In the above case the hazard and the effect of treatment on the hazard is calculated in the 
GROUP_VARIABLES block. This is then used in the MODEL_PREDICTION block to calculate the hazard for 
the event. The model outcome variable Y is then defined as having type tte and the hazard calculated 
in the MODEL_PREDICTION block is passed in as an argument. Specification of the model is then very 
simple for the user – no calculation of Survival functions nor likelihood is necessary. 

In the current MDL, TTE models are able to be handled equally by NONMEM and Monolix. To facilitate 
this, we impose certain constraints on dataset conventions. There must be a data record at the start of 
the interval during which the hazard will be integrated. We use DV = 0 to denote right censoring and 
DV = 1 to denote an event. 

Currently only exact time of event and right censoring is supported in MDL. Future versions will 
support interval censoring and repeated time to event. 

The convention in NONMEM datasets of using MDV to identify the start of the observation period for 
assessing TTE cannot be used. In order to make the model and data interoperable the user must ensure 
that MDV is not included in the data or use “use is ignore” for MDV in the DATA_INPUT_VARIABLES 
block. 

4.13 FUNCTIONS block 
This block allows users to define their own functions, for example for use with interpolation.  

The syntax is as follows: 

<function name> :: function(<argument1> :: <argument1 type>,  

         <argument2> :: <argument2 type>, 

    … 

         <argumentk> :: <argumentk type>) 

   :: <function result type> 

   is 

   <expression using argument1… argumentk> 

 

Specifying the types of each argument and the type of the function result allows validation of the 
function inputs and outputs. 

To call the function, the user types “&” before the function name. 

For example: 

FUNCTIONS{ 
  myInterp::function(t::real, x0::real, t0::real, x1::real, t1::real)::real is x0 
 } 
 
DATA_INPUT_VARIABLES { 
  ID : { use is id } 
  TIME : { use is idv } 
  WT : { use is covariate, interp=&constInterp } 
  AGE : { use is covariate, interp=&myInterp } 
… 

} 
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4.14 POPULATION_PARAMETERS block  
The POPULATION_PARAMETERS block allows the user to define models and model parameters that exist 
at the population level. This may be used in hierarchical models to define population parameters when 
there are additional levels of hieararchy above the individual.  

In most “population approach” models, the individuals are assumed to be drawn from a population, the 
characterstics of which are described through fixed and random effect models. Inferences are then 
made on the “population parameters” which we take to be representative of the population from 
which the individuals are drawn. 

In meta-analysis across many studies, regions, demographic populations it may be useful to 
characterise additional levels of hierarchy characterising how individuals within each study, region or 
demographic differ systematically (through fixed effect models) and randomly (through variability 
models). These higher level models can be expressed in the POPULATION_PARAMETERS block.  

In the current MDL, population models are defined through combination of 
RANDOM_VARIABLE_DEFINITION and POPULATION_PARAMETERS definitions. In the current MDL 
expressions (equations) are NOT allowed in the POPULATION_PARAMETERS block.  

The POPULATION_PARAMETERS block uses random variables defined in the 
RANDOM_VARIABLE_DEFINITION block. The syntax for the POPULATION_PARAMETERS block is as 
follows:POPULATION_PARAMETERS{ 
  :: {type is <continuous|categorical>,  
 variable=<RANDOM_VARIABLE_DEFINITION variable>}   
 } 

 

For example (/FourModels/Hierarchical_Model.mdl): 

RANDOM_VARIABLE_DEFINITION(level=POP){    
  w_pop ~ Normal(mean = ws, sd = gw) 
  V_pop ~ Normal(mean = Vs, sd = gV) 
  } # end RANDOM_VARIABLE_DEFINITION  
 
…   
POPULATION_PARAMETERS{ 
  :: {type is continuous, variable=w_pop}   
  :: {type is continuous, variable=V_pop} 
 } 

RANDOM_VARIABLE_DEFINITION(level=ID) { 
  ETA_BSV_V ~ Normal(mean = 0, sd = omega_V) 
  } # end RANDOM_VARIABLE_DEFINITION  
 
 
INDIVIDUAL_VARIABLES {  
  V : {type is linear, trans is ln, pop=V_pop,  
 fixEff={coeff=BETA_WT, cov=WT}, ranEff=ETA_BSV_V} 
  } # end INDIVIDUAL_VARIABLES 
 
MODEL_PREDICTION { 
  D 
  f = D/V * exp(-k*T) 
  } # end MODEL_PREDICTION 

In the model above, the mean weight for each population is drawn from a Normal random variable. The 
mean Volume of distribution also varies for each population and is similarly drawn from a Normal 
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random variable. The parameters for inference would be Vs (“global” mean of Volume of distribution), 
gV (between population variability), omega_V (between individual variability), BETA_WT (fixed effect 
of Weight). V_pop gives the population prediction of Volume of distribution for each population 
observed in the data, while V gives the individual predicted Volume of distribution. 
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5 The Task Properties Object 
The Task Properties Object is intended to convey information to specific target software related to 
algorithms, settings, options for performing a given task. In the current version of MDL, the 
implementation of this is very limited. Some Task Properties Object settings are generic (apply across 
different target software) but most are specific to the intended target software. 

Task properties are specific to the task e.g. ESTIMATE, SIMULATE, OPTIMISE, EVALUATE. 
TARGET_SETTINGS are specific to a given target software tool. If the user intends to estimate with a 
given tool but no ESTIMATE block is given in the Task Properties Object and/or if the task properties 
are not specified for the intended tool, then default settings are used. 

In the current version of MDL, only the estimation algorithm property can be set. 

5.1 Intended use of Task Properties 
The user should provide information about settings and options for each target software that they wish 
to use for a given (estimation) task. These settings and options might be specified to ensure 
reproducibility of results regardless of target software i.e. to ensure that the results from a given 
target software are comparable with results from different target software.  

Alternatively, the user may wish to provide settings and options that they will frequently use with a 
given target software – so that every time they estimate with a given target they use the same 
settings. 

The modularity of MDL allows the user to preset or reuse Task Properties objects between models. The 
user may then have preferred Task Properties for estimation that can be called upon during the 
relevant points in their M & S workflow. 

As with other MDL blocks, it is possible to specify multiple Task Properties blocks within a single .mdl 
file and then reference only the one required for use with a specific task in either the MOG Object or 
via R. This allows the user to specify preferred settings for multiple target software tools – facilitating 
reproducibility and reuse. Even though many Task Properties Objects can be given in an .mdl file, the 
MOG Object should contain only ONE Task Properties Object. 

5.2 Why use Task Properties for settings and options rather than 
arguments of functions in the ddmore R package? 

Task Properties are distinct from arguments to the ddmore R package functions for executing tasks – 
the former passes information to the appropriate target software about the particular settings and 
options required for a given task. The ddmore function arguments are equivalent to the command line 
settings or options which are employed when invoking target software.  

For example, we may use Task Properties to define the estimation algorithm and associated settings 
with NONMEM, but define command line options for PsN which govern how NONMEM should be called by 
PsN. 

5.3 How are Task Properties used by MDL and PharmML? 
The Task Properties generic items are parsed and understood by the MDL editor within the MDL-IDE. 
However target software specific settings and options are not parsed by the MDL-IDE – these are passed 
as is via the PharmML to the target software converter where they are interpreted and converted 
where they may appear in target software code, external settings or options files as appropriate. 

5.4 ESTIMATE Block 
In the current MDL version, the only block supported is the ESTIMATE block. The syntax for this block 
is: 
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set algo is <foce | focei | saem | mcmc> 

As stated previously, this block will be extended in future versions of MDL to capture target software 
specific settings and options. 

5.4.1 TARGET_SETTINGS 
The TARGET_SETTINGS block holds specific settings for the given target software. These settings may 
be given in name – value pairs within the TARGET_SETTINGS block, or they may be specified in an 
external file. 

MDL does not check whether the specified options within the TARGET_SETTINGS block are appropriate 
for a given tool. This is performed by the converter for the target tool. See the MDL Reference section 
for a list of which options are available for each target software. 

The syntax for the TARGET_SETTINGS block is: 

TARGET_SETTINGS(target=”NONMEM” | “MONOLIX” | “BUGS” | “PFIM”, settingsFile = “<filename>”){ 

 set <target specific setting name> = <target specific setting value>, 

 <target specific setting name> = <target specific setting value>, 

 … 

} 

Note the comma separation between elements of the set statement. 

For example (UseCase1_1): 

SAEM_task = taskObj { 
  ESTIMATE{  
 set algo is saem  
 TARGET_SETTINGS(target="NONMEM"){ 
# $EST METHOD=SAEM INTERACTION NBURN=3000 NITER=500 PRINT=100 SEED=1556678 ISAMPLE=2 
# $COV MATRIX=R PRINT=E UNCONDITIONAL SIGL=12 
 set INTER=true, NBURN=3000, NITER=500, PRINT=100, SEED=1556678, ISAMPLE=2, 
     COV_=true, COV_MATRIX="R", COV_PRINT="E", COV_UNCONDITIONAL=true,  
     COV_SIGL=12 
 } 
 
 TARGET_SETTINGS(target="MONOLIX", settingsFile=["tables.xmlx"]){ 
 set graphicsSettings="tables.xmlx" 
 } 
   } 
} # end of task object 
 
BUGS_task = taskObj{ 
 ESTIMATE{ 
  set algo is mcmc 
   TARGET_SETTINGS(target="BUGS"){ 
   set nchains = 1, # Number of MCMC chains 
   burnin = 1000, # Number of MCMC Burn-in iterations 
   niter = 5000, # Number of iterations 
   parameters = "V,CL,KA,TLAG", # Parameters to monitor 
   odesolver="LSODA", # or "RK45" 
   winbugsgui ="false" # or "true" 
  } 
 } 
} 

62 

 



 
FOCEI_task= taskObj { 
  ESTIMATE{  
 set algo is focei 
 TARGET_SETTINGS(target="NONMEM"){ 
# $EST METHOD=COND INTERACTION MAXEVAL=9999 NSIG=3 SIGL=10 PRINT=5 NOABORT NOPRIOR=1  
# FILE=example1.ext 
# $COV MATRIX=R PRINT=E UNCONDITIONAL SIGL=12 
 set INTER=true, MAXEVAL=9999, NSIG=3, SIGL=10, PRINT=5, NOABORT=true,  
     NOPRIOR=1, FILE="example1.ext",  
     COV_MATRIX="R", COV_PRINT="E", COV_UNCONDITIONAL=true, COV_SIGL=12,  
     MSFO_FILE="MSFO.msf" 
 } 
  } 
} # end of task object 
 
For BUGS, the following properties are valid (as shown above): 

 nchains = <integer> 

 niter = <integer> 

 parameters = <comma-separated character string of parameter names> 

 odesolver = <”LSODA” | “RK45”> 

 winbugsgui = <”true” | “false”>    

 

For NONMEM, the following rules are used in the TARGET_SETTINGS block: 

a) Individual properties influence only $EST statement or the $COV 

b) Properties starting with the string ‘COV_’ will be added to the $COV statement using the 
following rules 

 a. The string ‘COV_’ will be removed from the property 

 b. If the remainder of the property is a string/integer assignment, it will be added as a 
 parameter on the $COV statement verbatim (with any unnecessary quotes removed) 

 c. If the remainder of the property is a boolean assignment resolving to true, just the 
 parameter name will be added on the $COV statement verbatim 

c) If there are any ‘COV_’ properties present, then a $COV statement will be generated.  
Otherwise it will not be generated 

d) Any property starting with a string that is not ‘COV_’ will be added to the $EST statement using 
the same string/integer/boolean rules as for $COV 
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6 The Prior Object 
For Bayesian estimation, the user must specify a Prior Object, which is used in place of the Parameter 
Object. The Prior Object defines prior distributions or values for all model parameters – both structural 
and variability. The prior distributions form an additional level of model hierarchy above all other 
levels of variability in the model. This level of the hierarchy does not need to be explicitly defined in 
the Model Object VARIABILITY_LEVELS block. it is implied through use of the Prior Object. 

6.1 Prior distributions vs initial values vs fixed values 
At present we do not support translation of the Prior Object to NONMEM prior specification for use with 
the $BAYES estimation algorithm. The only supported Bayesian estimation tool currently is WinBUGS. 
While NONMEM accepts a mix of prior distribution specification and initial values for estimation, 
WinBUGS requires prior distributions for all parameters, or fixing parameters to a given value. A fixed 
value can be thought of as a probability mass function (pmf) on a single value. A fixed value for a 
parameter represents a very strong prior on the value of that parameter. Bounds on parameters should 
be handled using an appropriate ProbOnto distribution e.g. Beta, Gamma, Uniform, Half-Normal, 
Truncated-Normal. 

6.2 PRIOR_PARAMETERS Block 
The PRIOR_PARAMETERS block holds constants which may be used in the PRIOR_VARIABLE_DEFINITION 
or NON_CANONICAL_DISTRIBUTION blocks. This allows the user to specify the general form of the prior 
distribution in the PRIOR_VARIABLE_DEFINITION block and then examine sensitivity to prior choice by 
altering the values in the PRIOR_PARAMETERS. 

The PRIOR_PARAMETERS block should contain variable assignment statements.  

 <VARIABLE> = <value> 

Note that In the PRIOR_PARAMETERS block, the variable is assigned a value, not a list with attributes. 
As mentioned above, if a model parameter is to be fixed then it takes the value assigned in the 
PRIOR_PARAMETERS block. An attribute “fix=true” is not required. 

For example (/Priors/UseCase1_PRIOR): 

PRIOR_PARAMETERS{ 
   # prior on "THETA" 
   MU_POP_CL    = 0.2 
   MU_POP_V     = 10 
   MU_POP_KA    = 0.3 
   MU_POP_TLAG  = 0.75 
   VAR_POP_CL   = 1 
   VAR_POP_V    = 1 
   VAR_POP_KA   = 1 
   VAR_POP_TLAG = 0.1 
 
   # prior on "OMEGA" 
   MU_R_CL = 0.2  
   MU_R_V  = 0.2  
   MU_R_V_CL  = 0 
   DF_OMEGA = 2 
     
   MU_OMEGA_KA = 1 
   MU_OMEGA_TLAG = 1 
   
   # prior on "SIGMA" 
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   a_POP_RUV_ADD = 1.1 
   b_POP_RUV_ADD = 3 
   a_POP_RUV_PROP = 1.1 
   b_POP_RUV_PROP = 3 
 
   } # end PRIOR_PARAMETERS 

6.3 PRIOR_VARIABLE_DEFINITION – Parametric distributions as priors 
In the PRIOR_VARIABLE_DEFINITION block we set up the prior distributions for the STRUCTURAL and 
VARIABILITY parameters of the Model Object. All model parameters must have a prior distribution 
specified, or a constant value set. 

If model parameters are correlated or have a multivariate distribution then it is common (although not 
mandatory) to specify multivariate prior distributions. To do so, the user is likely to need to specify 
vectors of means and matrices for covariances or correlations. The syntax for specifying vectors and 
matrices is given in section 9.1.4.7.  

The PRIOR_VARIABLE_DEFINITION block can contain assignment, transformation and random variable 
definitions using ProbOnto definitions for distributions. 

For example (UseCase1_PRIOR): 

   PRIOR_VARIABLE_DEFINITION{ 
 
    # prior on "THETA"      
    lMU_POP_CL = ln(MU_POP_CL)   
    lPOP_CL ~ Normal(mean=lMU_POP_CL, var=VAR_POP_CL) 
    POP_CL = exp(lPOP_V)  
 
    lMU_POP_V = ln(MU_POP_V)   
    lPOP_V ~ Normal(mean=lMU_POP_V, var=VAR_POP_V) 
    POP_V = exp(lPOP_V)  
     
    lMU_POP_KA = ln(MU_POP_KA) 
    lPOP_KA ~ Normal(mean=lMU_POP_KA, var=VAR_POP_KA) 
    POP_KA = exp(lPOP_KA) 
 
    lMU_POP_TLAG = ln(MU_POP_TLAG) 
    lPOP_TLAG ~ Normal(mean=lMU_POP_TLAG, var=VAR_POP_TLAG) 
    POP_TLAG = exp(lPOP_TLAG) 
     
    # priors on "OMEGA" 
    R_mat =       [[ MU_R_CL, MU_R_V_CL; 
       MU_R_V_CL, MU_R_V ]] 
    TAU_CL_V ~ Wishart2(inverseScaleMatrix=R_mat, degreesOfFreedom=DF_OMEGA) 
    OMEGA_CL_V = inverse(TAU_CL_V) 
    PPV_CL = sqrt(OMEGA_CL_V[1,1]) 
    PPV_V = sqrt(OMEGA_CL_V[2,2]) 
    PPV_V_CL = OMEGA_CL_V[1,2] 
 
    TAU_KA ~ Gamma2(shape=0.001, rate=0.001) 
    PPV_KA = sqrt(1/TAU_KA) 
  
    # prior on "SIGMA"   
    invRUV_ADD ~ Gamma2(shape=a_POP_RUV_ADD, rate=b_POP_RUV_ADD) 
    invRUV_PROP ~ Gamma2(shape=a_POP_RUV_PROP, rate=b_POP_RUV_PROP) 
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    RUV_ADD = sqrt(1/invRUV_ADD) 
    RUV_PROP = sqrt(1/invRUV_PROP) 
    } # end PRIOR_VARIABLE_DEFINITION 
 

Note the following parameters have prior distributions assigned: POP_CL, POP_V, POP_KA, POP_TLAG, 
PPV_CL, PPV_V, COV_CL_V, PPV_KA, RUV_ADD, RUV_PROP. 

Note that priors on between subject variability are given on the precision scale (= 1 / variance). This is 
to facilitate use in BUGS. Here the distributions used are Wishart and Gamma on the precision 
parameters, but Inverse-Wishart and Inverse-Gamma may alternatively be used on the variance-
covariance matrix and variance parameters. 

Note also that priors for POP_CL, POP_V, POP_KA and POP_TLAG could also be defined using 
logNormal1 distributions (using the ProbOnto distribution) instead of transforming and back-
transforming using Normal(…) distributions. 

To specify a matrix, we use double square brackets, and specify elements row-wise, separated with a 
semi-colon. To specify elements of a matrix we use the R convention of square bracket specifying row 
and column entries. For example: 

    R_mat =       [[ MU_R_CL, MU_R_V_CL; 
       MU_R_V_CL, MU_R_V ]] 
 
To specify the first row and column entry (corresponding to MU_R_CL): R_mat[1,1]. 

 
Note that a Gamma distribution is used to define the prior on the between subject variability for 
PPV_KA. This is a legacy from the early days of fitting hierarchical models in BUGS where Gamma priors 
were conjugate and easier to sample from. They have been somewhat discredited as prior choices. 
Recent literature has favoured Half-Cauchy priors on variance parameters of hierarchical models as 
they are robust against smaller numbers of subjects.16 

6.4 Non-parametric and empirical distributions as priors – inline 
data. 

As an alternative to parametric distributions as priors, the user can specify non-parametric 
distributions (specifying bins of values and probabilities for each bin) or empirical distributions 
(specifying data forming the basis of empirical sampling). Univariate and multivariate sampling 
distributions have been defined in MDL for non-parametric and empirical sampling distributions. 

In both cases the source for the non-parametric or empirical sampling can be specified inline via the 
PRIOR_PARAMETERS block, or by referencing an external data source in the PRIOR_SOURCE block. 

6.4.1 Non-parametric distribution specification with inline data. 
To specify a non-parametric distribution, MDL has a distributions called NonParametric and 
MultiNonParametric. These map to the ProbOnto RandomSample non-parametric distribution definition. 
To specify the non-parametric distributions, the user must supply bins and probabilities for sampling. 
To specify this inline we create a vector (for NonParametric) or matrix (for MultiNonParametric) of bins 
and a vector of probabilities. These are specified in the PRIOR_PARAMETERS block. 

For example (Priors examples, Example3421dep) 

   PRIOR_PARAMETERS{ 

16 Gelman, A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 
(2006) 1, Number 3, pp. 515–533 
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 …   
  # For Non-Parametric distribution 
  bins_POP_K_V =  
matrix(vector=[2.006510,2.045465,2.084421,2.123377,2.162333,2.201288,2.240244,2.27920
0,2.318156,2.357111,                
5.050013,5.050013,5.050013,5.050013,5.064166,5.064166,5.064166,5.064166,5.078318,5.07
8318],ncol=2, byRow is FALSE) 
   
 p_POP_K_V = 
[0.033333,0.100000,0.100000,0.200000,0.100000,0.066667,0.166667,0.100000,0.066667,0.0
66667] 
   } # end PRIOR 
 
  PRIOR_VARIABLE_DEFINITION{ 
  # prior on "THETA"    
    POP_K_V ~ MultiNonParametric(probability=p_POP_K_V, bins=bins_POP_K_V) 
    POP_K = POP_K_V[1] 
    POP_V = POP_K_V[2]         
    … 
    } # end PRIOR_VARIABLE_DEFINITION 
 

Here a matrix of bins for POP_K and POP_V is created by specifying a vector of values and then defining 
the number of columns and method for filling the matrix. A vector of probabilities is also defined. Then 
in the PRIOR_VARIABLE_DEFINITION block the multivariate non-parametric sampling distribution is 
defined referencing the probabilities and bins. Finally the Priors for POP_K and POP_V are defined by 
referencing the elements of the POP_K_V vector. 

6.4.2 Empirical distribution specification with inline data. 
Similarly, the user can specify the data source for empirical sampling within the PRIOR_PARAMETERS 
block and then refer to this in defining the sampling distribution for the PRIOR_VARIABLE_DEFINITION. 

For example (Priors examples, Example 3422) 

 PRIOR_PARAMETERS{ 
data_POP_K_V = 
matrix(vector=[2.006510,2.045465,2.084421,2.123377,2.162333,2.201288,2.240244,2.27920
0,2.318156,2.357111,             
5.050013,5.050013,5.050013,5.050013,5.064166,5.064166,5.064166,5.064166,5.078318,5.07
8318],ncol=2, byRow is FALSE) 
… 
   } # end PRIOR 
# 
 
PRIOR_VARIABLE_DEFINITION{ 
  # prior on "THETA"     
  POP_K_V ~ MultiEmpirical(data=data_POP_K_V) 
  POP_K = POP_K_V[1] 
  POP_V = POP_K_V[2] 
  … 
    } # end PRIOR_VARIABLE_DEFINITION 

Again, the data source is defined by specifying a matrix of values for POP_K and POP_V and then using 
this as the basis for the MultiEmpirical sampling distribution. For the univariate Empirical sampling 
distribution, only a vector would be needed as the basis for sampling. 
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6.5 NON_CANONICAL_DISTRIBUTION block 
As an alternative to inline data specification for non-parametric or empirical sampling distributions, 
the user may reference and external dataset for bins and probabilities (for use with non-parametric 
sampling distributions) or data for the basis of the empirical sampling distribution. 

6.5.1 PRIOR_SOURCE block 
Similarly to the SOURCE block within the Data Object, the PRIOR_SOURCE block is a named list providing 
the file name, format of the source data. However the PRIOR_SOURCE block adds an argument to the 
list to provide a vector of column names to be used in the data source for the sampling distributions. 

The syntax is as follows: 

PRIOR_SOURCE{ 

  <data source name> : { file = <”filename.csv”>, inputFormat is csv, column = [<”variable name1”, 
“variable name2”, … , “variable name k”]} 

} 

Multiple data sources may be defined within the PRIOR_SOURCE block. 

6.5.2 INPUT_PRIOR_DATA block 
The PRIOR_SOURCE data objects can then be referenced in the INPUT_PRIOR_DATA block to define how 
the data file columns map to objects to be used in the PRIOR_VARIABLE_DEFINITION block sampling 
distributions. This is done using anonymous lists. 

The syntax is as follows: 

INPUT_PRIOR_DATA{ 

  :: { src = <PRIOR_SOURCE data variable>, vector | matrix = <PRIOR_VARIABLE_DEFINITION object>, 
 column = “<PRIOR_SOURCE data column name>” } 

} 

For example : 

NON_CANONICAL_DISTRIBUTION{ 
  PRIOR_SOURCE{ 
    NonPar_K_V : { file="Nonparametric_K_V.csv", inputFormat is csv,  
   column=["bins_k", "bins_v", "p_k_v"]} 
        
    Emp_SIGMA : { file="Empirical_Sigma.csv", inputFormat is csv, 
   column=["data_SIGMA2"]}  
    } 
 
  INPUT_PRIOR_DATA{ 
    :: { src= NonPar_K_V, vectorVar=p_k_v, column="p_k_v" } 
    :: { src= NonPar_K_V, matrixVar=bins_k_v, column=["bin_k", "bins_v"] } 
    :: {src= Emp_SIGMA, column="data_SIGMA2", vectorVar=data_SIGMA2 } 
    } 
  } 
 
PRIOR_VARIABLE_DEFINITION{ 
  p_k_v::vector 
  bins_k_v::matrix 
  data_SIGMA2::vector 
  POP_k_v ~ MultiNonParametric(bins=bins_k_v, probability=p_k_v)  
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  POP_SIGMA2 ~ Empirical(data=data_SIGMA2)  
 
  POP_K = POP_k_v[0] 
  POP_V = POP_k_v[1] 
  } 
 

In the above example, two sources are specified – one giving non-parametric sampling bins and 
probabilities for K and V, the other providing values for SIGMA to be used in the empirical sampling 
distribution. In the definition of NonPar_K_V we want to read three columns from the PRIOR_SOURCE 
data file – “bins_k” and “bins_v” to specify the bins for K and V, and “p_k_v” to specify the 
probabilities for sampling these bins. In the definition of Emp_SIGMA we define the columns of the 
PRIOR_SOURCE data file to use as the basis of the empirical sampling distribution of SIGMA. 

In the INPUT_PRIOR_DATA block we specify how the defined PRIOR_SOURCE information is to be 
mapped to vectors and matrices defined in the PRIOR_VARIABLE_DEFINITION block and used in the 
definition of the sampling distributions. Note that in the PRIOR_VARIABLE_DEFINITION block we must 
define the type of the objects p_k_v, bins_k_v and data_SIGMA2 (vector, matrix and vector 
respectively). POP_k_v is then sampled from a multivariate non-parametric sampling distribution with 
bins specified by the matrix bins_k_v and sampling probabilities by the vector p_k_v, while 
POP_SIGMA2 is sampled from an empirical sampling distribution with values held in the vector 
data_SIGMA2. 
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7 The Design Object 

7.1 Design Object overview 
The Design Object is intended to provide information for creating simulation or evaluation of trial 
designs, and design space information required for optimal design. For trial simulation or design 
evaluation, the trial design is fixed and should be completely defined. For optimal design the user 
should specify a design space to optimise over in the DESIGN_SPACES block. 

The user should specify all required interventions (drug administrations), sampling (or observation) 
schedules, populations, covariate distributions, and design parameters. These are then combined in the 
STUDY_DESIGN block to completely define study design(s). For simulation and evaluation only one 
design should be specified. For optimal design, many study designs can be considered and the 
DESIGN_SPACES block will determine what attributes the optimisation algorithm will search over. 

An elementary design is given by the combination of INTERVENTION + SAMPLING, and can describe the 
design for groups of subjects e.g. treatment arms, or can define a unique design for an individual. In 
optimal design the combination of treatment arms and numbers of subjects in each is called the 
population design. 

7.2 DECLARED_VARIABLES block 
As with the DECLARED_VARIABLES block in other MDL objects, the block should contain any variables 
defined in other MDL Objects (typically the Model Object) that are required for complete definition of 
the Design Object. See section Error! Reference source not found. for further details. 

7.3 INTERVENTION block 
The INTERVENTION block contains details of administration schedules and types and how these are 
combined to form treatment interventions. Note here that we distinguish between treatment 
interventions (including placebo treatment, non-medical treatments, drug-free periods) and treatment 
arms, since an arm of a study may be purely observational i.e. with no treatment intervention. For the 
optimisation task of optimal design, the INTERVENTION block defines the treatment definitions for the 
starting design (if required by the algorithm). 

The syntax for this block is: 

<name> : { type is bolus,  

  input = <Model Object dosingTarget>, 

  amount = <real value or vector of real values>, 

  doseTime = <vector of real values>, 

  ssInterval = <real value>, 

  timeLastSSDose = <real value>, 

  doseIntervalVar = <dosing interval variable reference>, 

  lastDoseTimeVar = <time of last dose variable reference> 

  } 

In the above, ssInterval and timeLastSSDose are optional; doseIntervalVar, lastDoseTimeVar are 
optional. 

<name> : { type is infusion,  

  input = <Model Object dosingTarget>, 
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  amount = <real value>, 

  rate = <vector of real values >,  

  doseTime = <vector of real values>, 

  duration = < vector of real values >, 

  ssInterval = <real value>, 

  timeLastSSDose = <real value>, 

  timeStopSSInfusion = <real value>, 

  doseIntervalVar = <dosing interval variable reference>, 

  lastDoseTimeVar = <time of last dose variable reference> 

  } 

In the above, one of duration or rate must be present. If doseTime is not present, then timeLastSSDose 
or timeStopSSInfusion must be present. 

<name> : { type is combi,  

  combination = <vector of previously defined interventions>, 

  start = <vector of start times>, 

  end = <vector of end times> 

 } 

The “combi” type is used to combine existing (already defined) intervention schedules to form more 
complex dosing regimens. 

<name> : {type is reset, 

  reset = { variable = <Model Object dosingTarget variable>,  

   resetTime=<real value>,  

   value=<real value>} 

 } 

The “reset” type is used to reset the dosing variable in the Model Object at a given time. 

<name> : {type is resetAll} 

The “resetAll” type is used to reset all dosing variables. 

For example, defining a single oral administration to the GUT at time 0 for use with the warfarin 
example (/Design/UseCase1_design1_eval): 

INTERVENTION{ 
  admin1 : {type is bolus, input=GUT, amount=100, doseTime=[0] } 
  } 

Another example showing single dose administration with an oral dose to the GUT and an infusion to 
the CENTRAL compartment (UseCase4_design1_eval): 

INTERVENTION{ 
  admin1 : {type is infusion, input=CENTRAL, amount=100, doseTime=[0], duration=100 } 
  admin2 : {type is bolus, input=GUT, amount=150, doseTime=[0] } 
  } 
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A more complex example showing how interventions can be combined to define sequences of 
interventions and actions. 

INTERVENTION{ 
 ivbolus : {type is bolus, input=CENTRAL, amount=100, doseTime=0 } 
 oral4 : {type is bolus, input=GUT, amount=150, doseTime=[0,24,48,72] } 
 ivinf : {type is infusion, input=CENTRAL, amount=100, doseTime=0, duration=1 } 
 wash1 : {type is resetAll} 
   
 ivoral : {type is combi, combination = [ivbolus, wash1, oral4], start=[0, 24, 48]} 
 oralinf : {type is combi, combination = [oral4, wash1, ivinf], start=[0, 96, 120]} 
  } 
 

The above example describes three different drug administrations – an IV bolus dose, four doses of oral 
drug separated by 24 hours, and an IV infusion over the space of 1 hour. It also describes a washout 
“event” which resets the amount in all dosing variables in the model. We can then combine these four 
interventions and actions into a treatment arm definition. So the ivoral arm receives the ivbolus dose 
at time zero, then a washout / reset at 24 hours followed by the four oral doses starting at 48 hours. 
Note that the doseTime argument in each intervention definition defines the dosing time relative to 
the respective value in the start argument of the combination definition. Similarly, the oralinf arm 
receives the four doses of oral drug, followed by a washout / reset event at 96 hours then the ivinf 
treatment starting at 120 hours. 

That is: 

Time 0 24 48 72 96 120 

ivoral ivbolus wash1 oral4[1] oral4[2] oral4[3] oral4[4] 

oralinf oral4[1] oral4[2] oral4[3] oral4[4] wash1 ivinf 

 

Note that for vectors of times, the seq(…) function can be used to specify a sequence of times with 
starting time, stopping time and interval size (MDL_Reference Guide section 5.80). 

7.4 SAMPLING block 
Similar to the INTERVENTION block, the SAMPLING block provides a means to describe observation 
schedules which can then be used for individuals, for treatment arms or in combination to define 
complex patterns of observation. For the optimisation task in optimal design, the SAMPLING block 
defines the starting design sample times (if required by the algorithm). 

The syntax for this block is: 

<name> : {type is simple,  

  outcome = <Model Object OBSERVATION block variable>, 

  sampleTime = <vector of real values>, 

  numberTimes = <integer>, 

  deltaTime = <real value>, 

  blq = <real value>, 

  ulq = <real value>, 

 } 

In the above definition, the outcome argument is mandatory, all other arguments are optional. 
numberTimes defaults to the length of the sampleTime vector. Either numberTimes or sampleTime 
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should be used, not both. Note that numberTimes should only be used in the context of Optimal Design 
optimisation tasks and not for design evaluation or simulation. deltaTime is the minimum time 
between two samples (for use in optimal design). 

To combine a number of sampling definitions, the user can use the following syntax: 

<name> { type is combi, 

  combination = [<vector of previously defined sampling schedules>,  

  numberTimes = <integer>, 

  start = <vector of real values>, 

  relative = < Boolean> 

 } 

The combination argument is mandatory, other arguments are optional. 

For an example of definition of “simple” sampling scheme (UseCase1_design1_eval): 

SAMPLING{ 
  window1 : {type is simple, outcome=Y, 
   sampleTime = [0.0001, 24, 36, 48, 72, 96, 120] } 
  } 
 

For an example of combining sampling schedules (UseCase3_design1_eval): 

SAMPLING{ 
  winPK : {type is simple, outcome=CC,  
  sampleTime = [0.0001, 24, 36, 48, 72, 96, 120] } 
  winPD : { type is simple, outcome=PCA,  
  sampleTime = [0.0001, 24, 36, 48, 72, 96, 120] } 
  # implies concurrent start, both start 0 unless define times 
  sampPKPD : {type is combi, combination=[winPK,winPD] } 
  } 

In the above, the sampling schedules for winPK and winPD start concurrently (at time 0) – there is no 
vector of start times to offset winPK and winPD. 

7.5 POPULATION block 
The POPULATION block initialises and defines population characteristics or distributions for use in 
defining covariate distributions within the Model Object COVARIATES block. The POPULATION block acts 
like a COVARIATES block for the Design Object, where the user defines covariate distributions and how 
these may differ for each study arm. The COVARIATES block in the Model Object defines how 
(observed) covariates are used in the model. 

The syntax for the POPULATION block is: 

<population_name> : { type is template,  

   covariate = [<list of covariate definitions>] } 

Each covariate definition should have the following syntax. For continuous covariates: 

{cov = <covariate name>, rv ~ <ProbOnto distribution>} 

For discrete covariates: 

{catCov = <covariate name>, discreteRv ~ <ProbOnto distribution>} 
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It is possible to define an arm to contain only one level of a categorical covariate (defined in the 
POPULATION block) by using the following syntax: 

{catCovValue = <categorical covariate category>} 

Note that covariates defined in the POPULATION block should be declared in the DECLARED_VARIABLE 
block. 

For example, for the Design Object to be used with UseCase5 which uses WT, SEX and AGE as 
covariates (UseCase5_design2_opt.mdl): 

DECLARED_VARIABLES{ 
  … 
  SEX withCategories{female, male} 
  } 

POPULATION{ 
default : { type is template, covariate = { catCov=SEX,  
     discreteRv ~ Bernoulli1( probability = 0.5) } } 
arm2Pop : { type is template, covariate = { catCovValue=SEX.female } } 
  } 

In the above example, a default distribution is defined for the SEX covariate which has categories 
female and male and defines that 50% of subjects should be male. (The Bernoulli distribution defines 
probability of the second category). arm2Pop is defined as having ONLY female subjects. 

Another example for the same model: 

POPULATION{ 
  default : { type is template,  
    covariate=[{ catCov=SEX, discreteRv ~ Bernoulli1(probability = 0.5) }, 
      {cov = WT, rv ~ Normal1(mean= 
    piecewise{{ 70 when SEX==SEX.male;  
      otherwise 60 }},  
       stdev=10)  
   } 
     ] 
  } 
  arm2Pop : { type is template,  
  covariate=[{ catCovValue=SEX.female },  
        {cov = WT, rv ~ Normal1(mean=55, stdev=5) }]  
  } 
  } 

In the above example, SEX is defined as having 50% probability of being male, and WT is defined as 
having a Normal1 distribution where the mean depends on the value of SEX. If SEX is male then the 
mean is 70, whereas if female then the mean is 60. Both populations have a standard deviation of 10 
for WT. arm2Pop is exclusively female and WT is defined separately for this group. 

The populations defined in the POPULATION block are used in definition of the study arms within the 
STUDY_DESIGN block. For example: 

STUDY_DESIGN{ 
  arm1 : { 
  armSize=16, 
  interventionSequence=[{ 
   admin=admin1, 
   start=0 
  }], 
  samplingSequence=[{ 
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   sample=window1, 
   start=0 
  }], 
  population = default 
 } 
arm2 : { 
  armSize=17, 
  interventionSequence=[{ 
   admin=admin1, 
   start=0 
  }], 
  samplingSequence=[{ 
   sample=window1, 
   start=0 
  }], 
  population = arm2Pop 
   } 

7.6 STUDY_DESIGN block 
The STUDY_DESIGN block defines how the SAMPLING, INTERVENTION and POPULATION blocks are used 
to define arms in a study design. For the optimisation task of optimal design, it defines the starting 
design (if required by the algorithm). For evaluation and simulation tasks it defines the study design to 
be evaluated or simulated. 

The syntax for defining each arm is as follows: 

<name> : {armSize = <integer value>,  

   sameTimes = <Boolean>, 

   occasionSequence = [{occasion=<vector>, level=<reference varLevel>, start=<vector>}], 

   interventionSequence=[{admin = <INTERVENTION block list name>, start = <real value> }],  

   samplingSequence = [{sample = <SAMPLING block list name>, start = <real value> }], 

   population = <POPULATION block list name> } 

Recall that the intervention (doseTime argument) and sampling times (sampleTime argument) 
specified are relative. Within the STUDY_DESIGN block definitions we can specify start times for these 
that define in study time, when each starts. Using this construct it is possible to define interventions 
and samples that happen concurrently, and also those that happen sequentially. If the start argument 
is not given in interventionSequence or samplingSequence then it is assumed to be zero and the 
start times are taken from the relevant INTERVENTION and SAMPLING block definitions. 

armSize defines the size of each arm. 

If multiple outcomes are defined, then sameTimes (if true) denotes that the same observation times 
are to be used for all outcomes. 

Additionally and optionally, arguments may be given pertaining to the study design as a whole. These 
are defined using the set keyword and are comma separated. Arguments used are: 

totalSize = <integer value> 

numberSamples = <vector of integer> 

totalCost = <real value> 

numberArms = <vector of integer> 

sameTimes = <Boolean> 
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totalSize defines the overall size of the study. This defaults to the sum of the individual armSize 
arguments.  

numberSamples defines the constrain on the number of samples for one subject. If one value is given, 
the number of samples should be equal to that value for all designs. If several values are given then 
this defines the set of number of samples allowable in designs (primarily used in optimal design). 

totalCost defines the total cost for the entire population design. 

numberArms defines the constraint on the number of arms in the study. If a single value is given then 
the final design will have exactly the required number of arms. If several values are given then this 
defines the set of number of arms allowable in designs (primarily used in optimal design). 

sameTimes defines whether the sample sampling times are to be used for all observed outcomes. 

As an example of the STUDY_DESIGN block (UseCase5_design2_opt.mdl): 

STUDY_DESIGN{ 
  arm1 : { 
    armSize=16, 
    interventionSequence=[{ 
 admin=admin1, 
 start=0 
 }], 
    samplingSequence=[{ 
 sample=window1, 
 start=0 
 }], 
    population = default 
 } 
 
  arm2 : { 
    armSize=17, 
    interventionSequence=[{ 
 admin=admin1, 
 start=0 
 }], 
    samplingSequence=[{ 
 sample=window1, 
 start=0 
 }], 
    population = arm2Pop 
    } 
  } 
 
Another example showing how arguments like totalSize and numberSamples should be used (when 
optimising a study design): 

STUDY_DESIGN{ 
  set totalSize=40,  
    numberSamples=4 
    arm1 : { 
  interventionSequence=[{ 
   admin=admin1, 
   start=0 
  }], 
  samplingSequence=[{ 
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   sample=window1, 
   start=0 
  }], 
  population = default 
 } 
 … 
  } 
 

7.7 DESIGN_SPACES block 
The DESIGN_SPACES block defines which design elements should be optimised in finding the optimal 
design. A design space defines the possible values of the design variables specified in SAMPLING, 
INTERVENTION, POPULATION blocks. It should not be used with design evaluation (EVALUATE task in the 
Task Properties object) or simulation. If no design space is defined for a variable e.g. amount or 
sampling schedule then it is assumed fixed for the optimisation process.  

The syntax for DESIGN_SPACES definitions is as follows: 

<name> : {objRef = <named object in INTERVENTION, SAMPLING or POPULATION>, 

     element is <variable from named object above>, 

     discrete = <vector of values, with type dependent on original argument >, 

     range = <vector of values defining upper and lower range of values to be explored,  

   with type dependent on original argument> 

      } 

Valid choices for element depend on the object type (SAMPLING, INTERVENTION, POPULATION) that is 
being referenced: bolusAmt, infAmt, duration, sampleTime, numberTimes, covariate, 
numberArms, armSize, parameter, doseTime. 

For example (UseCase1_design2_optFW.mdl): 

warfarin_PK_ODE_design = designObj{ 
  … 
 
  SAMPLING{ 
 window1 : {type is simple, sampleTime = [0.0001, 36, 96, 120], outcome=Y } 
  } 
  DESIGN_SPACES{ 
 DS1 : { objRef=[window1], element is sampleTime,  
   discrete=[0.0001,24, 36,48,72,96, 120] }  
 DS2 : { objRef=[window1], element is numberTimes,  
   discrete=[4,5] }  
  } 
  … 
} 
 

In the above example the DESIGN_SPACES defines how the optimisation algorithm will investigate the 
optimal design based on the window1 defined within the SAMPLING block, examining designs with 4 or 5 
sample points chosen from the sample times defined in DS1 i.e. [0.0001, 24, 36, 48, 72, 96, 120]. The 
sample times defined in window1 of the SAMPLING block are used as the starting design for 
optimisation. 

Another example: 
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warfarin_PK_SEX_design = designObj{ 
  … 
  INTERVENTION{ 
  admin1 : {type is bolus, input=INPUT_KA, amount=100, doseTime=[0] } 
  } 
  SAMPLING{ 
 window1 : {type is simple, sampleTime = [0.0001, 24, 36, 48, 72, 96, 120],  
   outcome=Y } 
  } 
  STUDY_DESIGN{ 
  arm1 : { 
  armSize=16, 
  interventionSequence=[{ 
   admin=admin1, 
   start=0 
  }], 
  samplingSequence=[{ 
   sample=window1, 
   start=0 
  }], 
 } 
 arm2 : { 
  armSize=17, 
  interventionSequence=[{ 
   admin=admin1, 
   start=0 
  }], 
  samplingSequence=[{ 
   sample=window1, 
   start=0 
  }], 
 } 
  } 
} 
 
  DESIGN_SPACES{ 
 DS1 : { objRef=[window1], element is sampleTime,  
   discrete=[0.0001, 24, 36, 48,72,96, 120] }  
 DS2 : { objRef=[window1], element is numberTimes, discrete=[4,5] }  
 DS3 : { objRef=[admin1], element is bolusAmt, discrete=seq(100,300,100) }  
 DS4 : { objRef=[arm1, arm2], element is armSize, range=[0,30] } 
  } 
In the above example several design space elements are defined. DS1 defines possible sampling times 
for window1, while DS2 defines that designs of 4 or 5 samples are to be considered. DS3 specifies that 
the amount to be dosed should vary between 100 and 300 with steps of 100. Finally DS4 specifies how 
the number of subjects in each arm should be in the range [0,30] (inclusive) for both arms. 

7.8 DESIGN_PARAMETERS block 
This block defines parameter values (constants) required for use in defining the design or to pass as 
constants to the model. Values are defined by assignment <name> = <value> or by equation <name> = 
<equation>. 

Variables defined in DESIGN_PARAMETERS can be used in definition of covariate distributions defined in 
Design Object blocks. 
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Recall the example above where the distribution of covariates was defined in the POPULATION block: 

POPULATION{ 
  default : { type is template,  
    covariate=[{ catCov=SEX, discreteRv ~ Bernoulli1(probability = 0.5) }, 
      {cov = WT, rv ~ Normal1(mean= 
    piecewise{{ 70 when SEX==SEX.male;  
      otherwise 60 }},  
       stdev=10)  
   } 
     ] 
  } 
  arm2Pop : { type is template,  
  covariate=[{ catCovValue=SEX.female },  
        {cov = WT, rv ~ Normal1(mean=55, stdev=5) }]  
  } 
  } 

We can define the population means for weight in each population in the DESIGN_PARAMETERS block 
and pass these values into the POPULATION block definitions. 

DESIGN_PARAMETERS{ 
  maleMeanWT = 70 
  femaleMeanWT = 60 
  femaleMeanWTArm2 = 55 
  stdevWT = 10 
  } 
   
POPULATION{ 
  default : { type is template,  
  covariate=[{ catCov=SEX, discreteRv ~ Bernoulli1(probability = 0.5) }, 
    { cov = WT, rv ~ Normal1(mean= 
    piecewise{{ maleMeanWT when SEX==SEX.male;  
    otherwise femaleMeanWT }},  
      stdev=stdevWT) }] } 
  arm2Pop : { type is template,  
  covariate=[{ catCovValue=SEX.female },  
  { cov = WT, rv ~ Normal1(mean=femaleMeanWTArm2, stdev=stdevWT) }]  
  } 
  } 
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8 The MOG Object 
The MOG Object is where the user defines the MDL objects required for a particular task: estimation, 
simulation, design evaluation or optimisation.  

8.1 INFO Block 
The INFO block provides a name and/or problem statement to the associated MOG. The name attribute 
populates the Name tag in PharmML, while the problemStmt attribute populates the Description tag in 
PharmML. This information can then be passed forward to target software that support names or 
problem statement definition. For example, NONMEM conversion uses the problemStmt attribute to 
populate the $PROB statement, while the name attribute is converted to metadata in the comment 
header of the control stream file. 

By default the Name tag in PharmML is “Generated from MDL. MOG ID: <MOG object name>”.  

The problemStmt attribute can be set via the ddmore R package function writeMDL( … , problemStmt = 
“Problem statement text”). 

The syntax for the INFO block is: 

INFO{ 
  set problemStmt = <text string> ,  
   name = <text string> 
  } 

The statements can be comma separated or the set command can be used for each line. 

For example (UseCase1_1.mdl): 

INFO{ 
  set problemStmt = "my Problem Statement" 
  set name = "10May2016 Task Properties check" 
  } 

8.2 OBJECTS Block 
In the current MDL version, the only block supported is the OBJECTS block.  

The OBJECTS block defines the objects (defined in the current .mdl file) that are to be used in defining 
the Modelling Objects Group for use in the desired task. The MDL-IDE checks that these named objects 
exist in the current file.  

The MDL-IDE also uses the MOG Object to “tie together” variable definitions across objects – it checks 
that variables used in the model are defined. So for example, if the model expects a covariate called 
logtWT but this is not defined in the Data Object then an error is given. Without a MOG Object, no 
validation check of this type is possible. Without the MOG Object, the MDL-IDE can only perform 
rudimentary syntax checking of MDL statements. With the MOG Object defined the MDL-IDE can check 
that the resulting model will result in valid PharmML. 

The syntax for statements in this block is : 

<Object name within the current MDL file> : {type is <dataObj | designObj | mdlObj | parObj | 
priorObj | taskObj>} 

Note that in the MOG Object, the user must specify dataObj OR designObj; parObj OR priorObj. As 
stated previously, for simulation, design evaluation or optimisation the Design Object takes the place 
of the Data Object. Similarly for estimation with BUGS or other Bayesian estimation software the Prior 
Object takes the place of the Parameter Object. 

For example (UseCase1.mdl): 
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warfarin_PK_ODE_mog = mogObj { 
 OBJECTS{ 
  warfarin_PK_ODE_dat : { type is dataObj } 
  warfarin_PK_ODE_mdl : { type is mdlObj } 
  warfarin_PK_ODE_par : { type is parObj } 
  warfarin_PK_ODE_task : { type is taskObj } 
 } 
} 

8.3 Mapping of variable names between MDL Objects 
The current version of MDL requires that variable names in each object are consistently named. 
Future versions of MDL may allow mapping between variable names across objects. 
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9 MDL Language Reference 
The aim of this section is to provide the technical aspects behind the MDL language: documenting its 
syntax and semantics in detail. New users may wish to read the sections on Data Object, Parameter 
Object, Model Object, Task Properties Object and Model Object Group, and explore the MDL 
implemented in the Use Case examples first in order to familiarise themselves with how MDL is used 
to define models. The information in this section may be of more interest to users who are writing 
their own models using MDL and wish to know the detail of syntax and grammar implemented in the 
MDL-IDE.  

Like many computational languages MDL has two layers. First is the syntactic layer, or core, that 
defines how the words and symbols of the language are combined together in meaningful ways. This is 
like the building blocks of the language, it’s vocabulary, punctuation and grammar.  Building on this 
foundation then is the second, semantic layer of MDL.  This is where the meaning of the language is 
defined and how the building blocks of the core are used to create a language that describes 
pharmacometric models. 

This organisation is reflected in this section, which starts with the description of the language core, 
followed by an explanation of MDL’s type system before moving on to the semantics layer of MDL. 

9.1 Core syntactic elements 
The core units of the language are described here from the bottom up. Starting with the language 
keywords, through the definitions of expressions and statements until we reach the highest level of 
organisation in MDL, the object. 

9.1.1 Keywords 
The keyword names are reserved and cannot be reused elsewhere, for example as attribute or variable 
names.  The keywords in MDL have deliberately been kept to a minimum and at present there are 16. 
They are: 

as, if, else, elseif, ln, exponentiale, false, in, inf, is, otherwise, 
pi, piecewise, set, then, when, withCategories, true 

include a keyword that are not currently used, but which is reserved for future versions of MDL: 

ordered 

9.1.2 Variable names 
Variables names in MDL must conform to the following rules: 

● There are no reserved variable names in MDL 
● Variable names may only contain letters or numbers and ‘_’ and must start with a letter or ‘_’ 

character. 
● As MDL is a case sensitive language the case of letters matters in variable names so ‘t’ is a 

different variable to ‘T’. 
 
In technical terms a variable name must comply with the following regular expression: 
 ('a'..'z'|'A'..'Z'|'_')('a'..'z'|'A'..'Z'|'_'| '0'..'9')* 

An addition constraint not reflected in the above regular expression is that the variable name also 
cannot begin with ‘MDL__’.  This prefix is reserved for internal used by code generators that may be 
used to convert MDL to other languages and may need to create synthetic variable names. 

9.1.3 Literals 
Values such as numbers and strings etc can be written explicitly in MDL.  Technically such values are 
referred to as literals. MDL supports the following types: 
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• Vector: [0, 1, 2, 25.0] 
• Matrix: [[0, 20, 2; 23.5, 20, 1]] 
• Strings: “a string“ 
• Integers: 99, 22, 0, -1, -477 
• Real: 99.9, -0.473, 9e-2, -0.3424e5 
• Boolean: true, false 

 
Note that in the current MDL a vector containing only integer values will be regarded as a vector of 
type integer (not of type real). To ensure that the vector is of type real, the user may need to specify 
one of the numbers as a real value e.g. 25.0.  

 

9.1.4 Expressions 
An expression in MDL is primarily used to express mathematical concepts and evaluate mathematics. 
Expression are divided into two types, Boolean and numerical. The former is an expression that 
evaluates to a Boolean (True or False), while the latter evaluates to a Real number. Examples are: 

 x > 5 && y <= 0 

 x – 5 * 23 

 x^(2*x/z) 

Expressions can contain mathematical functions too: 

 sin(x) 

 ln(x + y) + ln(22) 

Some functions can use named arguments: 

 x + func(arg1=1, arg2=3) 

In MDL conditional statements are also expressions: 

 x * if(y > 22) then 300 * a else 1 

And they can use categorical variables: 

 x * if(sex == sex.female) then 1 else 0 

9.1.4.1 Numerical and Boolean Expression 
Expressions are built up using operators that either take one or two operands: 

 binary_op := <operand> <operator> <operand> 

 unary_op := <operator> <operand> 

Logical expressions are formed using combinations of Boolean operators (&&, ||, !) or comparison 
operators (<, >, <=, >=, !=, ==). Numerical expressions use the standard mathematical operators (+, -, 
/, *, ^, %).  These are shown below. 

 

Operator Symbol Left Type Right Type Result 

Logical AND && Boolean Boolean Boolean 
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Logical OR || Boolean Boolean Boolean 

Less than < Real Real Boolean 

Greater than > Real Real Boolean 

Less than or equal <= Real Real Boolean 

Greater than or 
equal 

>= Real Real Boolean 

Equal == Real Real Boolean 

Not equal != Real Real Boolean 

Power ^ Real Real Real 

Multiplied by * Real Real Real 

Divided by / Real Real Real 

Modulo 
(remainder) 

% Real Real Real 

Add + Real Real Real 

Subtract - Real Real Real 

Negation (unary) -  Real Real 

Positive (unary)   Real Real 

 

The operators have the same operator precedence you would expect in a standard mathematical 
equation. In the table below operator precedence is shown, ordered from highest to lowest. 

Operators Precedence 

Unary + - ! 

Power ^ 

Multiplicative * / % 

Additive + - 

Relational < > <= >= 

Equality == != 

Logical AND && 
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Logical OR || 

 

9.1.4.2 Variable references 
A symbol name used in an expression is treated as a reference to a symbol defined elsewhere in the 
same object. 

a = 10 

b = 10 + a 

The above code snippet shows how the variable reference ‘a’ in the expression refers to the definition 
of variable “a” which is initialised to 10.  This is intuitive as is the fact the expression evaluates to 20. 
However, references to categorical variables behave slightly differently. A reference to it takes two 
forms: 

1. A reference to the variable itself, e.g. sex 
2. Or a reference to a category value, e.g. sex.female 

Note that the second form uses a qualified name based on a combination of the categorical variable 
and its value: 

<categorical variable>.<category value> 

The meaning of a reference to a category variable is self-evident, however, a reference to the 
categorical variable itself is less so.  Consider the following: 

 sex withCategories {male, female} 

 sex == sex.female 

In essence, the reference to the categorical variable ‘sex’ is referring to the category value held by 
‘sex’.  If ‘sex’ holds the value ‘sex.female’ then this expression evaluates to true. This enables us to 
write conditions expressions (see below) like this: 

 if(sex == sex.female) then 1 else 0 

9.1.4.3 Type Specifications 
As is described below MDL (see Type System) infers the type of parameter or variable where it can.  
However, when a variable is not initialised the author must tell MDL what type to expect.  The type 
specification syntax enables this.  Simple examples are below: 

A::real 

B::string 

C:: int 

D::pdf 

E::Boolean 

The basic syntax is ‘::’ followed by the type name.  Vectors, and matrices require more complex 
handling: 

F::vector[::int]    # vector of ints 

G::matrix[[::string]]   # matrix of strings 

H::matrix[[ ::vector[boolean] ]]  # matrix of vectors of booleans 

As you can see vector types need a type specification to define its element type as does the matrix.  In 
order to reduce typing some type specifications can be omitted in which case the type is assumed to be 
Real: 

85 

 



A    # type real 

F::vector   # vector of reals 

G::matrix   # matrix of real 

H::matrix[[ ::vector ]] # matrix of vectors of reals 

9.1.4.4 Conditional expressions 
Sometimes it is useful for an expression to evaluate to different values depending on some arbitrary 
criteria.  In a mathematical expression this is handled by a piecewise function: 

𝑓𝑓(𝑥𝑥) = �−1, 𝑥𝑥 < 0
1, otherwise 

In MDL we have a directly equivalent peicewise construct: 

piecewise {{ -1 when x < 0; otherwise 1 }} 

This can take more than 1 condition as you would expect: 

piecewise {{ -1 when x < 0; 1 when x > 0; otherwise 0 }} 

 

𝑓𝑓(𝑥𝑥) = �
−1, 𝑥𝑥 < 0

1, 𝑥𝑥 > 0
0, otherwise

 

Or just condition and no otherwise clase: 

Expressioens with more than one condition are possible: 

 piecewise {{ -1 when x < 0; 1 when x >= 0 }} 

which is equivalent to: 

𝑓𝑓(𝑥𝑥) = �−1, 𝑥𝑥 < 0
1, 𝑥𝑥 ≥ 0 

Equation 1 

 

A conditional expression should cover all possible conditions in order to prevent the generation of an 
undefined value, which will result in a runtime error. MDL does not enforce this, but to help ensure this 
it requires the writer provide at least two clauses. Ideally the last clause will be an ‘otherwise’ as this 
guarantees all conditions are covered, but in cases such as Equation 1 this clearly is not necessary so 
this is not mandatory. 

A related rule is that the conditions should also not define overlapping domains. In other-words only 
one condition can be true for any given set of values. This is illustrated by the code snippet below 
which breaks this rule: 

 piecewise {{ -1 when x < 0; 1 when x < 2; otherwise 0 }} # bad conditions! 

The first two conditions can be true if x is -1 for example, which makes the correct evaluation of this 
expression impossible (remember that the written order of the conditions is not meaningful). This last 
rule is very important, because the order that the conditions are evaluated cannot be guaranteed and 
so the result of the above expression may not be as expected. At the moment MDL does not check this 
so the author must ensure that all conditions are independent. 

Complementary to the piecewise expression is the if/else expression. Note that this is an expression 
not a statement so it is evaluated as part of a mathematical expression and is not used to control which 
statements are evaluated, as it would be in an imperative language such as R. The syntax is as you 
would expect: 
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 if(x < 0) then -1 elseif(x > 0) then 1 else 0 

Here the order of evaluation is significant. So ‘x < 0’ is evaluated before ‘x > 0’.  This means that the 
above example in an if/else expression is unambiguous: 

 if(x < 0) then -1 elseif(x < 2) then 1 else 0 

as the condition ‘x < 2’ will never be evaluated.  If/else expressions can be nested too: 

if(x < 0) then -1 else if(x > 0) then 1 else 0 

which is functionally equivalent to the ‘elseif’ non-nested equivalent. 

 

9.1.4.5 Conditional Lists 
A varant of the condition expression is the conditional list.  This allows the conditional assignment to a 
variable of a list. For example: 

 A : if(B > A) then { type is linear, pop=POP_A, ranEff = ETA_A } 
   else { type is general, grp=GRP_A, ranEff = ETA_A } 

This assign one or other of the lists to A depending on the condition.  This follows the same rules as for 
conditional expression, but the list being assigned must have the same List Super-type (see Type 
System, below).  In the above example both lists have a super-type of ‘IndivAbstractList’ so the list 
assignment ‘:’ is valid. 

A piecewise variant is also permitted: 

 A : piecewise {{ 

   { type is linear, pop=POP_A, ranEff = ETA_A } when B > A; 
   otherwise { type is general, grp=GRP_A, ranEff = ETA_A }  
  }} 

9.1.4.6 Functions 
Functions take two forms in MDL. Simple and named argument functions. The latter is equivalent to a 
standard mathematical function such as sin(a). The argument order is significant and all arguments are 
required. So for example: 

 logx(y, b) 

defines a logarithm of y to base b. Swapping the arguments around would change the meaning 
accordingly. 

The second form as one might expect takes named arguments and consequently the order of arguments 
is not important and some arguments are optional.  For example: 

 foo(arg1 = val1, arg2 = val2, arg3 = val3) 

 foo(arg1 = val1, arg2 = val2) 

call the same function, but ‘arg3’ can be omitted. Typically the function will use a default value, but 
the exact behaviour is determined by the definition of the function.  Arguments can be constrained so 
that only specific combinations are permitted as below: 

 foo(arg1 = val1, arg2 = val2, arg3 = val3) 

 foo(arg1 = val1, arg4 = val4, arg5 = val5) 

 foo(arg1 = val1, arg4 = val4, arg2 = val2)   # invalid 

 foo(arg1 = val1, arg5 = val5)    # invalid 
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Here the combinations of arg2, arg3 and arg4 and arg5 are permitted, but combination such as arg2 
and arg4 are not. Likewise, arg5 cannot be used unless arg4 is also provided. This gives a lot of 
flexibility in the parameterisation of functions. 

9.1.4.7 Function references 
When a function is invoked a reference to that function’s definition is invoked and the appropriate 
value returned. For example, in the expression: 

a = ln(10) 

the symbol ‘ln’ is a reference to the function defining the natural log.   

However, in some circumstances it is desirable to refer to a function, but not to evaluate it 
immediately, for example when referring to a function to be used for interpolation of data. In these 
circumstances a ‘&’ precedes the function name and the function arguments are omitted.  For 
example: 

 Obs : { use is dv, variable = Y, interp=&linear } 

Here the ‘interp’ attribute is assigned a reference to the ‘linear’ function definition. This function can 
then be invoked whenever interpolation between two data-points is required. 

9.1.4.8 Vectors 
Vectors are defined within in square brackets and can take numbers, strings, Boolean, variable 
references, logical and numerical expressions. Vectors must contain items of consistent type. The 
exception is when the vector contains numbers and variable references of numerical types (see type 
system below for more information).  Some examples are below: 

[ a, b-1, 1.0 * 3^5, 2.0^3.5, inf ] 

[ “str”, “a str too”, “a”, “str” ] 

[ true, false, true == false ] 

Note that all elements must be populated. So the following is not permitted: 

[ 3, , 3 ]  # forbidden 

Vectors can also be nested, but again the vectors must have the same type: 

[ [ 22, 45 ], [ 67, 89 ] ] 

Vectors may be assigned to a variable or parameter and then used in other expressions: 

A = [ 1.1, 2.2, 3.3, 4.4 ] 

B = A  #  B is assigned the contents of variable A 

B = A[1]  # B is a scalar and assigned the first value in A: 1.1 

B = A[2:3] # B is vector and assigned elements 2 and 3 in A: [2.2, 3.3] 

This illustrates how vector indexing works. The first element is at position 1 and the last index is equal 
to the length of the vector. If a single index value is used in square brackets, then a single scalar value 
is returned. As can be seen, MDL permits ranges of values to be specified, using a ‘:’ operator. This 
range operator is only permitted for vector and matrix indexing and ensures that the indexed vector 
returns a vector.  This has a useful side effect when a vector containing a single vector is required: 

B = A[3:3] 

this returns a vector containing just element 3 of vector A, i.e. [3.3]. 

Vector index ranges can be omitted too. This indicates that indexing should start at the beginning or 
the end of the vector. For example: 
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A[:3]  # first element to element 3 

A[2:]  # element 2 to the last element 

A[:]   # first to last elements, i.e., the complete vector 

Note that the last index is equivalent to the vector reference: 

B = A[:] 

B = A   # equivalent to above 

9.1.4.9 Matrices 
Matrices are very similar in their semantics to vectors and are indicated syntactically by the double 
square bracket with each row terminated by a ‘;’: 

M = [[ 1, 2, 3; 3, 4, 6 ]] 

Like vectors all cells in a matrix literal must be populated and in addition all rows must have the same 
number of columns: 

[[ a, b, c; 
   d, e;  # forbidden - inconsistent num columns 
   g, h, i ]]  

[[ a, b, c; 
   d, , f; # forbidden - missing value 
   g, h, i ]]  

Matrix indexing is similar to vector indexing and uses the same square bracket operator.  Instead, an 
index for the row and column are specified: 

M = [[ 1, 2, 3; 4, 5, 6 ]] 

N = M[2, 3]  #  a scalar value of 6 

The first index indicates the row number and the second the column. As with vectors indexing starts at 
1.  Range operators behave in the same way as vectors, but in this case they always return a matrix: 

N = M[2, 2:3]  #  returns matrix: [[5, 6]] 

N = M[1:2, 2]  #  returns matrix: [[2; 5]] 

N = M[1:2, 1:2]  #  returns matrix: [[1, 2; 4, 5]] 

N = M[1:1, 2:2]  #  returns matrix: [[2]] 

Empty ranges behave as with vectors, indicating the start or end of a row or column.  Row or column 
indexes can also be empty to indicate all rows or columns: 

N = M[, 1] #  returns matrix: [[1; 4]] 

N = M[, 1,2] #  returns matrix: [[1, 2; 4, 5]] 

N = M[2,] #  returns matrix: [[4, 5, 6]] 

N = M[,] #  equivalent to N = M 

9.1.4.10 Sublist Expressions 
The sublist is a convenient way of grouping together related pieces of information together in an 
expression.  In its basic form the sublist is a set of attributes combined together as below: 

{ att1 = val1, att2 = val2, … } 
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Sublists which have different attribute sets are regarded as different. In fact sublists are fully fledged 
types in MDL (see section ) so sublists with different attributes sets are distinct types. This is illustrated 
in the example below where th sublists correspond to sublist types a and b: 

{ att1 = val1, att3 = val3 }  # sublist a 

{ att2 = val2, att4 = val4 }  # sublist b 

This means that an argument in a function (see section  for more detail on argument typing) can 
require a particular sublist type. In this way type system can ensure that only the valid type system is 
used. For example if an attribute ‘foo’ expects a sublist of type a, then the following validity is 
enforced: 

foo = { att1 = val1, att3 = val3 }  # sublist a - valid 

foo = { att2 = val2, att4 = val4 }  # sublist b - invalid 

 

How is the type of a sublist determined? Very simply all sublists must have a unique set of attributes.  
The MDL processor takes the combination of attributes written and matches them to a sublist in its 
dictionary of sublist types. 

Sublist can also restrict the set of permitted attributes, just like you can with named function 
arguments (see section 9.1.6.3). The details of how this is carried out is described in detail below 
(section 0).  The sublist can be contained in a vector as well. For example: 

[ 

 { att1 = val1, att2 = val2}, 

 { att1 = val3, att2 = val4}, 

] 

A Sublist can be used by any attribute, function argument or property. Below is an example of its used 
in a function.  It shows how the sublist provides a convenient way to group together sets of covariate 
and fixed effect parameters in a linear individual parameter definition: 

ln(CL) = linear( trans is ln, pop = POP_CL, fixEff = [ 
    {coeff = BETA_CL_WT, cov = logtWT}, 
    {coeff = POP_FCL_FEM, catCov = SEX.female }, 
    {coeff = BETA_CL_AGE, cov = tAGE} 
], 
ranEff = [ETA_CL] ) 

9.1.4.11 Variable selection expression 
MDL provides support for conditionally assigning values in a variable to another variable using a special 
syntactic structure called a variable selection expression.  This construct is often used in a list 
(described in section ) and is best illustrated by an example: 

 CMT: { use is cmt } 

 AMT: { use is amt,  
  define={1 in CMT as GUT, 2 in CMT as CENTRAL} } 

The value mapping syntax is used with the ‘define’ attribute. It can be read as “if value is ‘1’ in 
variable ‘CMT’ then select as variable ‘GUT’, if value is 2 in ‘CMT’ then select as variable ‘CENTRAL’”.  
The semantics of what selection means can vary depending on context.  In the above example, which is 
valid MDL, the lists AMT and CMT each define a column in a dataset with the  AMT column values being 
assigned to the variable selected by the corresponding value in the CMT column. 

 The syntax for the variable selection expression is as follows: 
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{ <test value> in <qry var ref> as <select var ref>,  
 <test value> in <qry var ref> as <select var ref>, … } 

The query (qry) and selection (select) variable references cannot be the same, the same query variable 
must be used throughout the expression and the test value must be a numerical value. 

9.1.4.12 Category value selection expression 
Related to the variable selection expression is the category value selection. This carries out a similar 
function, but for category values, in this case a particular category value is selected when a given 
expression is matched. For example: 

{ sex.female when 0, sex.male when 1 } 

shows how sex.female is selected when the value is 0, and sex.male when it is 1.  Typically this 
expression is used in conjunction with a variable selection expression where the value in a list is to be 
mapped to a categorical variable. This is illustrated below where the values in a DV column definition 
are mapped to either a variable or a set of category values: 

DVID: { use is dvid } 

DV: { use is dv,  
 define={1 in CMT as GUT, 
         2 in CMT as { Outcome.dead when 0, Outcome.alive when 1} 
   } 
} 

The basic syntax is: 

{ <category.value> when <test value>,  
 <category.value> when <test value>, … } 

The test value should be a numerical value and the category values belong to the same category. 

9.1.5 Attributes, Arguments, Properties and Values 
Attributes in lists, arguments in functions and properties all behave in the same way in MDL.  For the 
sake of simplicity this description will refer to attributes, but this should be understood as a synonym 
for argument. 

An attribute is simply an identifier that is associated with a value.  That value can be of any valid type 
and is usually assigned to the with the ‘=’ operator. For example: 

att1 = 0 

att2 = true 

att3 = “string val” 

att4 = { a = 0, b = 3} 
   # sublist 

att5 = [0, 2, 3] 

att6 = [1.5, inf, x] 

att7 = { 1 in CMT as foo } 
     # a mapping 

att8 = varRef 

In addition an attribute can be assign a value from a controlled vocabulary of options, called a built-in 
enumeration. Because the MDL parser needs help to distinguish these option names from a variable 
reference it is necessary to use a different assignment operator. Therefore, we use the keyword ‘is’ to 
indicate that an attribute has been assigned an option. For example: 
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att8 is anOption 

A typical usage of a built-in enumeration is to define the key value of a list, for example: 

 c1 : { use is id } 

 c2 : { use is adm, variable = D } 

 c3 : { use is idv } 

Any name can be used as an attribute name as long as it is not a language keyword and it is a valid 
variable name. 

In the previous version of MDL an attribute expecting a vector type would have to be written thus: 

A : { foo = [ z ] } #  foo expectes a vector 

even when there was only one element in the vector. To avoid the additional typing and to improve 
readability it can now be written as: 

A : { foo = z  } 

The ‘foo’ attribute still expects a vector, so behind the scenes MDL converts this value to [ z ]. 

9.1.6 Statements 
The statement is the core of MDL and comes in several forms. However, they all have the following 
characteristics: 

1. A statement can be split over any number of lines. The parser detects the start and 
end of the statement based on its context. 

2. Sometimes it is helpful to the user to indicate where a statement starts and ends in 
which case an optional ‘;’ character can be used. Note this is completely optional. 

The different statement types are below. 

9.1.6.1 Equation definition 
This defines a variable using a notation equivalent to a mathematical equation. It can have three 
forms: 

1. x = <expression> 
x = 2 + 5 / ln(22) 

2. fn(x) = <expression>, where x is transformed by a function 
ln(x) = 2 + r 

3. x, where the variable x is declared but not initialised. 
x 

The symbol (parameter or variable) it defines always has a type of Real. 

In example 2 above, a transformation was used on the variable x. It is important to note that the 
variable x can be used later (without the transformation) and it is implied that a back-transformation 
will have been applied. The user need not explicitly back-transform the parameter in the MDL code. 

9.1.6.2 Category definition 
A category definition creates a variable that has two roles. First it groups together a set of categories 
that belong to this variable and second it holds a value that is one of these categories. Exactly what 
this means is explained below, but here is the syntax of the category definition. 

X withCategories { cat1, cat2, … catN } 
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The definition can create any number of categories but must have at least one. A simple example is: 

sex withCategories { male, female } 

 

The category values are specific for each category variable so the following is permitted: 

sex1 withCategories { male, female } 

sex2 withCategories { male, female } 

The categorical variable always has a type of Enum. 

9.1.6.3 List Definition 
The list is a way of associating attributes and values with a variable.  In many ways it is similar to a 
class seen in an Object Oriented programming language.  The list has the following syntax: 

 lst : { keyAtt (=|is) <value>, att (=|is) <value>, … } 

Note that a list holds a specific set of attributes. The exact set is determined by the key attribute 
used, it’s value and the block containing the list.  This is illustrated below. 

 

BLK1{ 

 lst1 : { key is val1, att2 = val2, att3 = val3 } 

 lst2 : { key is val2, att20 = val20, att3 = val3 } 

} 

 

In the above example the attribute named ‘key’ is the key attribute in block BLK1.  Note that a block 
can have only one key attribute.  That means, as in this example, the value may be used to distinguish 
between lists. So when the key attribute has a value of val1 the list uses a different set of attributes 
compared to when the value is val2. 

BLK2{ 

 lst3 : { key = keyVal, att2 = val2, att3 = val3 } 

 lst4 : { key = keyVal, att2 = val2, att3 = val3 } 

} 

BLK2 by contrast is configured not to use the value of the key attribute so each list must use the same 
set of attributes. Note that the attribute names can be the same across lists and the same key 
attribute name can be used in different blocks. Attribute names cannot be repeated within a list 
however and the key attribute is always mandatory. 

9.1.6.4 Anonymous lists 
The anonymous list is a legitimate version of a list, but it does not define a named list variable.  This is 
used where one wishes to group together a set of attributes that are related to each other, but when 
we do not want the list to be referred to elsewhere.  Its rules and behaviour are identical to this of the 
list in every other respect.  Its syntax is as follows: 

 :: { keyAtt (=|is) <value>, att (=|is) <value>, … } 

Note the ‘::’ symbol which designates this as an anonymous list. 
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9.1.6.5 Random variable definitions 
Random variables are defined using the ‘~’ assignment operator which is the common mathematical 
convention when relating a random variable to a probability distribution. In most respects the random 
variable definition behaves like a standard equation definition except that the expression on the right 
hand side of the ‘~’ must have a type of Pdf.  Note that the variable can have a transformation 
function on the left hand side. This is illustrated in the examples are below: 

ETA_CL ~ Normal(mean = 0, sd = PPV_CL)  # valid 

ln(ETA_CL) ~ Normal(mean = 0, sd = PPV_CL) # valid 

ETA_CL ~ PPV_CL     # invalid 

The generic syntax description is as follows: 

<ID> ~ <PDF expression> 

9.1.6.6 Category Lists 
It is possible to define a list that also defines a set of a categories. This type of definition allows the 
writer to associate a category definition with other attributes and information.  It also supports the 
ability to select a category based on an expression. This is illustrated in the example below: 

SEX: { use is catCov withCategories { M when 0, F when 1 } } 

where the list definition, SEX, can be treated as a categorical variable with categories ‘M’ and ‘F’.  
This list also defines a data column so the ‘when’ syntax indicates that the ‘M’ category value is assign 
to SEX if the data value is 0 and the ‘F’ category value if 1.  This provides a shorthand that allows us to 
both define the categories and their mapping.  The syntax of a category list is: 

<ID>: { <attName> is <builtinEnum>  
withCategories { <cat value> when <selection expr>, 
                 <cat value> when <selection expr> } [, 
<attName> [is|=] <cat value>, …] } 

9.1.6.7 Property Definitions 
Sometimes it is desirable to define properties that we wish to associate with a whole object.  
Sometimes this is because we want to define default attribute values for statements with the block or 
to set properties that only need to be defined once and which do not need to be referred to in an 
expression.  To support this MDL provides the property syntax as follows: 

set <prop name> [=|is] <prop value> [,  
    <prop name> [=|is] <prop value>, …] 

An example of this can be found in the task object where the properties of the task, such as the 
estimation algorithm are set in this way: 

ESTIMATION{ 
    set algo is saem 
} 

The property name is specific to the block and is unique to the block, so repeating property definition 
is forbidden. So: 

ESTIMATION{ 
    set algo is saem, algo is focei  # invalid 
} 

or 

ESTIMATION{ 
    set algo is saem 
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    set algo is focei  # invalid 
} 

will result in an error.  In all other respects property names behave just like attributes within a list, 
they can have the same types, they can be optional and mandatory and can be constraint to only 
permit certain combinations of property. 

9.1.7 Blocks 
The block is used to organise similar concepts and it can be configured to only contain certain types of 
statement. As we have seen above the block also provides the context for what list and property 
attributes are available for use.  The generic syntax is 

blkName [(name=value)] { <statement> [;] <statement> [;] … } 

In the above syntax description a statement may also be another block and so in this way sub blocks 
may be nested within each other. In MDL such nesting is limited to one level as can be seen in the 
example below: 

MODEL_PREDICTION { 
  DEQ{ 

    RATEIN = if(T >= TLAG) then GUT * KA else 0 
    GUT : { deriv =(- RATEIN), init = 0, x0 = 0 } 
    CENTRAL : { deriv =(RATEIN - CL * CENTRAL / V) }  
  } 
  CC = CENTRAL / V  
} 

where the DEQ block is used to contain the definition of differential equations. 

Blocks constraint the statements they contain in the number of ways: 

1. by type. Some blocks may only permit lists or equation definitions or combinations of 
statement types. 

2. by count. Each block defines the minimum and maximum number of statements it can 
contain. 

3. by sub-block. The block may permit no sub-blocks or sub-blocks with specific names. 

9.1.8 Objects 
The object is the highest level of syntactic organisation in MDL. It defines a container for a set of 
blocks and the variables defined inside them. In MDL the object has a specific purpose and its semantic 
are a combination of that purpose and the semantics of the blocks and statements it contains.  Its 
generic syntax is below: 

<ID> = <objName> { <block> [, <block>, … ] } 

where the objName is an internal MDL identifier for the type of the object.  The object’s type is 
related to semantic purpose.  Note that the object type controls what types of block it contains. For 
example in MDL an obj of type ‘dataObj’ cannot contain an ‘IDV’ block.  A short example of a dataObj 
is given below: 

warfarin_PK_ODE_dat = dataObj { 

 DECLARED_VARIABLES{GUT Y} 

 

 DATA_INPUT_VARIABLES { 

  ID : { use is id } 
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  TIME : { use is idv } 

  WT : { use is covariate } 

  AMT : { use is amt, variable = GUT } 

  DV : { use is dv, variable = Y } 

 } # end DATA_INPUT_VARIABLES 

  

 SOURCE { 

  srcfile : {file = "warfarin_conc.csv",  

  inputFormat is nonmemFormat }  

 } 

} 

 

9.2 The Type System 
One of the core mechanisms for ensuring correctness in MDL is its type system. In this section we 
explain what the different types are, and any rules associated with their correct usage. 

9.2.1 The types 
 

Name Description 

Int Integer 

Real Real number 

Boolean Boolean 

Enum  An enumeration type. A namespace for categories. Enumeration types do 
not require quotation marks (compared to strings). 

Enum value A specific enumeration defined by an enumeration type and the value held 
by a variable of enumeration type. 

Builtin Enum Commonly abbreviated to BE, this is a predefined set of enumerated 
values that are part of the MDL definition. These are usually prefixed by 
the ‘is’ keyword and are often (but not exclusively) used in lists to indicate 
the key attribute. 

List A data structure that associates a set of attributes with a variable.  See 
below for details. 

List Super-Type An abstract type that a list can inherit from. 

Pdf A Probability density function. Usually returned by a statistical 
distribution function. 

Random Variable A value that is a random variable and was obtained from a Probability 
Distribution. It can have subsidiary types of Real (continuous probability 
distributions), Int and Enum (discrete probability distributions). 

String A character string 
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Pmf A probability mass function type. Typically returned by discrete 
probability distribution functions. 

Mapping This is the type of the data mapping syntax structure. 

Sublist This is a sublist, essentially an attribute and value pair. 

Vector A one dimensional array of values of a single type. 

Matrix A two dimensional matrix. 

Reference A reference to a value. The value can be of any type 

Undefined No type. This is used internally to indicate a validation error during type 
checking. This is not a valid type. 

9.2.2 The default type 
In MDL the default type is Real. In a standard equation or random variable statement the symbol 
defined on the LHS of the definition is always of Real type. Examples: 

A = <expression> 

ln(B) = <expression> 

C ~ <expression> 

D 

9.2.3 Type promotion 
MDL allows an integer type to be used in mathematical expression. It does this using type promotion, 
where the integer value is automatically converted to a real value. This gives the kind of behaviour 
that the reader would expect. For example: 

A = 22.55 + 1 

A = 22.55 + 1.0 

are equivalent.  Note that mathematical expressions always evaluate to a value with a Real type so: 

A = 2 * 55 

is effectively evaluated as: 

A = 2.0 * 55.0 

9.2.4 Typing of more complex types 

9.2.4.1 Vector type 
A vector can potentially have elements of any type and in general all its elements must be of the same 
type. We refer to a vector type as “vector of type X” or an “X vector”. For example, vector of type 
String or String vector. 

The type promotion rules above also apply to vectors, which means that a Real vector can contain a 
mixture of integer and real values. 

Note that when writing a vector literal (see above) the type is inferred from its content. This means 
that for a vector to be of type Real it must contain at least one Real value as can be seen here: 

[ 0, 2, 3, 4 ]    # Int vector 

[ 0, 2.0, 3, 4 ]    # Real vector 
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[ -1.0, 2.0, 3.0, 4.0 ]   # Real vector 

[ true, false ]    # Boolean vector 

[ “A”, “b”, “C” ]    # String vector 

[ { att1 = val1 }, { att1 = val2 } ] # Sublist vector 

9.2.4.2 Matrix type 
This behaves identically to the vector type.  The type pf the matrix is inferred from its contents in 
exactly the same way. 

9.2.4.3 List type 
The type of the list is defined by a combination of its 

1. owning block 
2. key attribute 
3. key value 

This is best illustrated in the example below.  Here the ‘c1’ variable is of type ‘List:Idv’ and ‘c2’ of 
type ‘List:Amt’. They both belong to the same block, the key attribute is ‘use’ so the discriminating 
factor in determining their type is the values ‘idv’ and ‘amt’.  

DATA_INPUT_VARIABLES { 

 c1 : { use  is idv , variable= GUT } 

 c2 : { use  is amt , variable= GUT } 

} 

 

DATA_DERIVED_VARIABLES{ 

 c3 : { use is doseTime, idvColumn=c1, amtColumn=c2 } 

} 

In the DATA_DERIVED_VARIABLES block ‘c3’ is of a different type again, but contains two attributes, 
idvColumn’ and ‘amtColumn’ that expect references to variables of type ‘List:Idv’ and ‘List:Amt’ 
respectively.  List types are very specific for referencing another column type (as below) would result 
in a typing error: 

DATA_DERIVED_VARIABLES{ 

 c3 : { use is doseTime, idvColumn=c2, amtColumn=c1 } # invalid 

 # type error 

} 

In some cases the list value is not required to define the type. In the example below the type 
‘List:deriv’ is specified by just the block, ‘MODEL_PREDICTION’, and the key attribute ‘deriv’. As a 
consequence ‘GUT’ and ‘CENTRAL’ both have the same type. 

 MODEL_PREDICTION { 

  DEQ{ 

   RATEIN = if(T >= TLAG) then GUT * KA else 0 

   GUT : { deriv =(- RATEIN) } 

   CENTRAL : { deriv =(RATEIN - CL * CENTRAL / V) } 

98 

 



  } 

  CC = CENTRAL / V  

 } 

Each List type can potentially be converted to one another type when necessary.  This is particularly 
useful if the semantics of the list make it desirable to use the list variables in an mathematical 
expression. The above example shows just such a case. The semantic of List:deriv lists is to define a 
difference equation, with the list variable corresponding to the derivative variable.  The List:deriv type 
has a conversion type of Real. This means that when used in contexts that expect a Real type the Type 
system uses the conversion type. This allows the example above to be valid despite the fact that list 
variables are used as real values.  All list type can potentially have one conversion type, but it’s use is 
optional and if not define then the list cannot be converted. 

In the latest version of MDL there is an alternative method of identifying a list. This is via the attribute 
name. This acts as the list key and must be unique across all list types associated with the same block. 
For example, we can differentiate between different parameters as follows: 

A : { value = 0.2 } 

A : { vectorValue = [0.2, 0.3] } 

A : { matrixValue = [[ 0.2, 0.4; 0.5, 0.9 ]] } 

The above lists each have different types identified by the attribute name used. 

9.2.4.4 List super-types 
Sometimes it is useful to group related lists and refer to them interchangeably.  For example, 
observation variables use different list types to define different continuous error models: 

Y1 : { type is combinedError1 … }  # list type combinedError1List 

Y2 : { type is combinedError2 … }  # list type combinedError2List 

However, they are clearly related and should be compatible with each other. This is where the list 
super type is useful. In the above case both list types share the same super type, ‘observation’.  This 
enables another attribute to be assigned this super-type and it will be able to refer to either of these 
variables: 

Z1 : { superTypeAtt = Y1 } # valid 

Z2: { superTypeAtt = Y2 } # valid 

which would not be possible with normal list typing: 

X1 : { listTypeAtt = Y1 } # valid as expects type is combinedError1List 

X2: { listTypeAtt = Y2 } # invalid as expects type combinedError1List 

In the same way super-types enable conditional list assignments that involve different list types: 

U : if (x > 0) then { type is combinedError1, … } 
    else { type is combinedError2, … } 

here ‘U’ is allocated the type ‘observation’ because both lists share the same super-type. In this way 
MDL knows that these lists are compatible. 

9.2.4.5 Built-in enumeration type 
A built-in enumeration is essentially a controlled vocabulary that constrains the values that can be 
assigned to an attribute.  Each built-in enumeration is different and consists of a set of strings.  The 
enumeration is match if the name assigned to the attribute is one of the names held by its built-in 
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type.  As an example if there is a built-in type ‘eg’ that permits the names ‘foo’ and ‘bar’ then the 
following cases are valid and invalid: 

att1 is foo  # valid 

att1 is bar  # valid 

att1 is ugg  # invalid 

att1 = foo  # invalid 

The last case is important to note.  MDL only knows to expect a building enumeration if it is preceded 
by the ‘is’ keyword. In the last statement above the assignment symbol was used and in this case MDL 
would treat this as a reference to a variable. 

9.2.4.6 Sublist type 
Sublists are types and they are distinguished from each other by their attributes.  This is best 
illustrated by an example: 

ln(CL) = linear( trans is ln, pop = POP_CL, fixEff = [ 
    {coeff = BETA_CL_WT, cov = logtWT}, 

    {coeff = POP_FCL_FEM, catCov = SEX.female }, 

    {coeff = BETA_CL_AGE, cov = tAGE} 

    ],  

    ranEff = [ETA_CL] ) 

Above the attribute ‘fixEff’ expects a vector type of ‘Sublist:FixEff’. The type system looks at the 
available sublist types and identifies the one that has the same attribute names.  Note that the same 
type can allow different attribute combinations as can be seen in the example. If no subtype can be 
identified then the sublist is given a type of Undefined which will result in a typing error. Identifying 
the correct subtype also then allows the attributes in the sublist itself to be type checked. 

9.2.4.7 Enum and Enum Value types 
Enumeration types are unusual in MDL in that the type is to some extent defined within MDL. Take the 
following definitions: 

Gender1 withCategories { male, female, other } 

Gender2 withCategories { male, female, other } 

State withCategories {alive, dead } 

The first defines an enumeration type with individual values, ‘male’, ‘female’ and ‘other’. The second 
definition is distinct from the first because it is associated with a different symbol.  So in a sense the 
above definitions have created 3 new types called Gender1, Gender2 and State. However, the above 
statements also define 3 variables of the same name and as variables they can be initialised with one 
of their enumeration values.  So the variable ‘State’ can hold a value of ‘alive’ or ‘dead’, or more 
correctly ‘State.alive’ or ‘State.dead’.  This means that when used as a variable reference these 
variables always have a type of Enum value. This is illustrated by the example expressions below: 

Gender1 == Gender1.male # valid 

Gender2 == Gender1.male # invalid 

Gender1 == Gender2  # invalid 
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9.2.5 Type inference rules for Symbols 
When a variable is defined is must be allocated a type and unlike language such as R, this type cannot 
change.  Where is can MDL works out the type of the variable, usually from the type of any expression 
on the right hand side of an assignment operartor (‘=’, ‘~’ or ‘:’).  Where there is no assignment the 
variable type defaults to Real unless the author explciltly defines its type using a type specification 
(see above).  This is best describe using examples: 

A = [ 1, 2, 3 ]   # vector of ints 

B     # real 

C::string    # string 

D = true    # Boolean 

E ~ Poisson1(rate=lambda)  # Random Variable of int 

F withCategories {heads, tails} ~ Bernoulli1(probability=p1) 
     # Random Variable of enum 

G = [[ “A”, “B”; “C”, “D”]] # matrix of strings 

9.3 Scoping and statement ordering 
MDL is declarative. It describes what the model is not how to implement it. In common with other 
declarative languages MDL has the following features: 

● The order of blocks and statements within blocks is not significant. 
● This means that symbols can be defined after they are referenced. 
● A variable must not be assigned to more than once. 
● In general a variable cannot be assigned to an expression that is dependent on itself. For 

example the following is not permitted: 
a = b 
b = c 
c = a (this makes a cycle back to the first statement) 

 

A list can be defined that is exempt from this rule. For example, a derivative list can refer to iself: 

x : { deriv = -x } 

 This is consistent with mathematical definitions such as: 

dx/dt = -x 

The scoping unit for MDL is the object. Variables defined inside an object are visible to expressions in 
the same object, but not outside it.  This means that each MDL object is a self contained definition 
that does not rely on any other object. 

9.4 MDL Reference Guide 
Appendix X contains the MDL reference guide. This document gives detail of Object, Block, List, 
Sublist, Function and Type definitions. As it is based on and generated from the language definition file 
it documents exactly how the language is constructed and is definitive in describing what is valid MDL 
as implemented in the MDL-IDE. Elements of the Reference Guide have been extracted here in a format 
intended to help user understanding which may be used for quick reference. 
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9.4.1 How to read the MDL Reference Guide. 
There is a hierarchy in the MDL Reference Guide. This reflects the way that users approach the 
definition of a model in a sequential fashion. Understanding this hierarchy will help the user identify 
what statements and attributes are valid as shown here:. 

• Object definitions describe which Blocks are valid within each Object. 
• Block definitions describe  

o what arguments are associated with the block 
o what types of statements can be made within the block 
o what sub-blocks are permitted within the block  
o what list types are to be used with the block 
o what properties are permitted within the block. 

• List types define 
o whether the list can be anonymous i.e. using ::{ type is … } 
o whether the list can define categories 
o what types are associated with the list i.e. type is … 
o what attributes are permitted withing the list. 
o what the “signature” of the list looks like, including identifying which 

attributes are optional. 
o NB: list type names do not necessarily match the names used in MDL e.g. in 

defining individual parameters we type “ CL : {type is linear, … }” but the 
type of the list in the Reference Guide is “IndivParamLinear”. However the list 
type is given in the Block definition List table (left hand column) with the 
associated MDL key value in the right hand column. 

• Sublist definitions define the (small number of) cases where list types contain other 
lists, for example in definition of the fixed effect model within a IndivParamLinear 
list. The sublist definition defines: 

o what attributes are permitted within the sublist 
o the permitted signature of the sublist and which attributes are optional. 

• Function definitions define: 
o Arguments of the function 
o Type returned from the function. 

• Type definitions define  
o the types and associated type classes. 
o the keyword types and associated enumeration types. e.g. type is 

combinedError1; set algo is saem. 

9.5 Objects 
Valid types of Objects are: 

dataObj, designObj, parObj, priorObj, mdlObj, taskObj, mogObj 

9.6 Blocks 
The following blocks are defined for the various MDL Objects: 
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MDL Object Block Sub-blocks 

dataObj DECLARED_VARIABLES   

 DATA_INPUT_VARIABLES  

  SOURCE   

 DATA_DERIVED_VARIABLES  
 designObj DECLARED_VARIABLES   

  INTERVENTION   

  SAMPLING   

  DESIGN_PARAMETERS   

  POPULATION   

  STUDY_DESIGN   

  DESIGN_SPACES   

parObj STRUCTURAL   

 VARIABILITY  

 priorObj PRIOR_PARAMETERS   

 NON_CANONICAL_DISTRIBUTION  

 PRIOR_VARIABLE_DEFINITION  
mdlObj IDV   

 VARIABILITY_LEVELS  

  COVARIATES   

 FUNCTIONS  

 POPULATION_PARAMETERS  
  STRUCTURAL_PARAMETERS   

  VARIABILITY_PARAMETERS   

  GROUP_VARIABLES   

  RANDOM_VARIABLE_DEFINITION   

  INDIVIDUAL_VARIABLES   

  MODEL_PREDICTION   

      DEQ 

  COMPARTMENT 

  OBSERVATION   

taskObj ESTIMATE   

  SIMULATE  

  EVALUATE  

  OPTIMISE  
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mogObj INFO   

 OBJECTS   

 

9.6.1 Functions 
Mathematical functions are provided to support definition of models. The following mathematical 
functions are defined: 

Statistical functions: 

mean, median, probit, logit, invLogit, invProbit 

Arithmetic functions: 

log, log2, log10, ln, factorial, lnFactorial, floor, ceiling, min, max, abs, exp, sqrt, sum, toInt, seq, 
seqby, dseq, rep 

Trigonometric functions: 

sin, cos, tan, sinh, cosh, tanh, asin, acos, atan, asinh, acosh, atanh 

vector and matrix handling: 

toMatrixByRow, toMatrixByCol, asVector, inverse, triangle, transpose, diagonal, gInv, det, eigen, chol, 
matrix 

Interpolation functions: 

linearInterp, constInterp, lastValueInterp, nearestInterp, cubicInterp, pchipInterp, splineInterp 

Distributions (see below). 

9.6.2 Distributions 
Distributions are denoted using the ~ prefix. The following distributions are defined: 

Name Return 
Type 

Argument name Argument 
Types 

Comment 

Normal Pdf mean 

sd 

Real 

Real 

Maps to ProbOnto distribution 
Normal1 

Normal Pdf mean 

var 

Real 

Real 

Maps to ProbOnto distribution 
Normal2 

 

The following ProbOnto distributions are defined: 

Name Return 
Type 

Argument name Argument 
Types 

Comment 

Normal1 Pdf mean 

stdev 

Real 

Real 

Note that ProbOnto argument is 
stdev not sd 

Normal2 Pdf mean 

var 

Real 

Real 

 

Normal3 Pdf mean 

precision 

Real 

Real 

For use with BUGS 
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Name Return 
Type 

Argument name Argument 
Types 

Comment 

LogNormal1 Pdf meanLog 

stdevLog 

Real 

Real 

Values given on the ln scale 

LogNormal2 Pdf meanLog 

varLog 

Real 

Real 

Values given on the ln scale 

LogNormal3 Pdf median 

stdevLog 

Real 

Real 

median on the natural scale, 
standard deviation on the ln 
scale 

Bernoulli1 Pmf probability Real Probability argument specifies 
the probability of the second 
category. 

Poisson1 Pmf rate Real  

Binomial1 Pmf probability 

numberOfTrials 

Real 

Real 

Probability of success (second 
category). 

Beta1 Pdf alpha 

beta 

Real 

Real 

 

Gamma1 Pdf shape 

scale 

Real 

Real 

 

Gamma2 Pdf shape 

rate 

Real 

Real 

 

InverseGamma1 Pdf shape 

scale 

Real 

Real 

 

NonParametric Pdf bins 

probability 

Vector 

Vector 

 

MultiNonParametric vector 

Pdf 

bins 

probability 

Matrix 

Real 

 

Empirical Pdf data Vector  

MultiEmpirical vector 

Pdf 

data Matrix  

MultivariateNormal1 vector 

Pdf 

mean 

covarianceMatrix 

Vector 

Matrix 

 

MultivariateNormal2 vector 

Pdf 

mean 

precisionMatrix 

Vector 

Matrix 

 

MultivariateStudentT1 vector 

Pdf 

mean 

covarianceMatrix 

degreesOfFreedom 

Vector 

Matrix 

Real 
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Name Return 
Type 

Argument name Argument 
Types 

Comment 

MultivariateStudentT2 vector 
Pdf 

mean 

precisionMatrix 

degreesOfFreedom 

Vector 

Matrix 

Real 

 

NegativeBinomial2 Pdf rate 

overdispersion 

Real 

Real 

 

StudentT1 Pdf degreesOfFreedom Real  

StudentT2 Pdf mean 

scale 

degreesOfFreedom 

Real 

Real 

Real 

 

Uniform1 Pdf minimum 

maximum 

Real 

Real 

 

Wishart1 Matrix  

Pdf 

scaleMatrix 

degreesOfFreedom 

Matrix 

Real 

 

Wishart2 Matrix  

Pdf 

inverseScaleMatrix 

degreesOfFreedom 

Matrix 

Real 

 

InverseWishart1 Matrix  

Pdf 

scaleMatrix 

degreesOfFreedom 

Matrix 

Real 

 

CategoricalNonordered1 Pmf categoryProb Vector  

CategoricalOrdered1 Pmf categoryProb Vector  

MixtureDistribution1 Pdf weight 

distributions 

Vector 

Vector of 
PDF 

 

ZeroInflatedPoisson1 Pdf rate 

probabilityOfZero 

Real 

Real 
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10 Interoperability Guide 

10.1 On interoperability 
A key goal of the DDMoRe project is to have an intoperability framework in which models are written in 
a consistent language, translated to PharmML and from there converted to target software code. 
Before the DDMoRe project no existing language standard existed across target software used in 
pharmacometrics modelling, and while the underlying models could be expressed consistently in 
mathematical and statistical terms, the implementation of any given model varied by tool and by user 
according to their experience with a given target software tool. 

There is some flexibility within MDL around how the user can express the mathematical and statistical 
models. Having flexibility allows the user to encode models quickly in a common language (MDL) which 
can then be shared with others and mutually understood. This flexibility also facilitates encoding in a 
given target when that language construct does not have a parallel in other tools. However, we 
STRONGLY encourage the user to encode the majority of models in a way that will facilitate 
interoperability. There are MDL constructs that facilitate interoperability – these generally appear as 
built-in functions which translate to specific constructs in PharmML and the target software. These 
constructs cover many typical models and are designed to allow the user to generate code quickly and 
have high confidence that it will be interoperable across tools. 

The Model Description Language Interactive Development Environment (MDL-IDE) should assist the user 
in ensuring that the models encoded are valid MDL (and as a consequence, also valid PharmML). Not all 
models will result in code which can be readily converted to all target tools.  

These interoperability constructs will be highlighted in the subsequent sections, but users should pay 
particular attention to sections on the use of GROUP_VARIABLES,  INDIVIDUAL_VARIABLES and the 
MODEL_PREDICTION. 

10.2 Dataset  conventions 
There are a number of conventions in preparing data for use in MDL and for target software. 

• It is assumed that the SOURCE data file will be present as an ASCII comma-delimited text file 
(.csv).  

• The data file should have a header row with names matching those in the 
DATA_INPUT_VARIABLES block.  

• Data values should be numeric.  
• Data columns with string or date:time values should have “use is ignore” for MDL. 
• Null or missing values should be denoted by “.”. 

Generally speaking, MDL follows NONMEM dataset conventions. 

In addition the following restrictions should be observed for interoperability reasons: 

• A column with “use is id” is mandatory. Values should be positive, non-zero integer, unique and 
contiguous. 

• A column with “use is idv” is mandatory. Values should be positive, real. When the model is 
expressed using DEQ or COMPARTMENTS block the values must be monotonic increasing within ID. 
This constraint does not apply to analytical models. The first idv value is taken as the initial 
time for the model. The initial value does not need to be the same for all individuals, but it 
must not be lower than that of the first individual. date:time format is not supported for time.  

• A column with “use is dv” is mandatory. This column can be any real value. This must have a 
null value for dosing records. 
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• When modelling multiple outcomes a column with “use is dvid” is required. Values should be 
positive, integer. Values should not be null for observation records. 

•  A column with “use is mdv” is optional. Valid values are 0 (observed),1 (missing). When the 
observation is null or missing this column should have the value 1. It can take the value 1 when 
observations are present if this observation is to be ignored. 

• A column with “use is evid” is optional. Valid values are 0 (observation record), 1 (dosing 
record), 4 (reset and dose record).  

• A column with “use is amt” is optional. For dosing records this column must be have positive, 
real value. 

• A column with “use is rate” is optional. This column must have positive, real values. This 
column can only be used in combination with a column with “use is amt”. If the value is zero 
then a bolus dose is assumed. 

• A column with “use is addl” is optional. This column must have positive, real values. This 
column can only be used in combination with columns with “use is amt” and “use is ii”. 

• A column with “use is ii” is optional. This column must have positive, real values. This column 
can only be used in combination with columns with “use is amt” and “use is addl” or “use is 
ss”. 

• A column with “use is ss” is optional. Valid values are 0 (not at steady state), 1 (at steady 
state). This column can only be used in combination with columns with “use is amt” and “use is 
ii”. 

• A column with “use is cmt” is optional unless there is more than one route of administration. 
This column must have positive, integer values. Values in this column should start at 1 and 
correspond to the order of ODEs specified in the DEQ block of the Model Object.  

• Columns with “use is covariate”, “use is catCov” and “use is variable” are optional. These 
columns must not have missing values. Columns with “use is catCov” must have integer values. 
Covariate names in the DATA_INPUT_VARIABLES block must match the same name (including 
matching case) as the header name in the source file .csv. Please see sections 2.2.5, 4.3 and 
4.9 for details on the use of these variables. If the column has “use is covariate” or “use is 
catCov” but this variable is not declared in the COVARIATES block of the Model Object then it 
will be “dropped” and ignored.  

• Columns with “use is catCov” can only have values 0,1. This implies that categorical covariates 
with k values should be converted to k-1 indicator variables. 

• A column with “use is varLevel” is optional. This column should not have missing values. 
Columns with this type should not have an underscore in the column name. The change in value 
of this variable denotes when to sample new values of the random variable. 

10.3 Multiple uses of dataset columns 
Dataset columns cannot have multiple uses defined in DATA_INPUT_VARIABLES. The 
DATA_DERIVED_VARIABLES block can be used to specify additional uses for dataset variables. In the 
current MDL, scope for using DATA_DERIVED_VARIABLES is limited.  

For example, if the user wants to specify different outcomes / observations conditional on a dataset 
variable like CMT, i.e. using CMT as DVID then they will need to create a dataset variable DVID mapping 
into CMT values appropriately. 

10.4 Defining constants in the model  
For interoperability, constant values in the model should be defined as STUCTURAL_PARAMETERS and 
fixed to a value in the Parameter Object.  
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For models expressed as systems of differential equations (DEQ block), model parameters can be set to 
constant values in the MODEL_PREDICTION block, but this may be inefficient in the target software 
translation. 

In the current SEE, to ensure interoperability, model parameters should not be assigned a constant 
value in the GROUP_VARIABLES or INDIVIDUAL_VARIABLES block. 

10.5 MODEL_PREDICTION block 
To ensure Monolix interoperability, any variable used in the MODEL_PREDICTION block must be either: 

• the independent variable 

• defined in MODEL_PREDICTION 

• declared in INDIVIDUAL_VARIABLES using {type is linear, … } 

• defined as “use is variable” in the DATA_INPUT_VARIABLES block of the Data Object 

This implies in particular that STRUCTURAL_PARAMETERS, VARIABILITY_PARAMETERS, 
GROUP_VARIABLES and random variables defined in RANDOM_VARIABLES_DEFINITION cannot be used in 
MODEL_PREDICTION. 

10.6 OBSERVATION block 
For Monolix interoperability, different observations / outcomes must not share 
VARIABILITY_PARAMETERS and RANDOM_VARIABLE_DEFINITIONS. 

For interoperability with Monolix, the residual error(s) σ2
ij must be Normal(0,1) random variables. 
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11 Glossary 

11.1 Acronyms and Abbreviations 
Acronym Definition 

AMT Dose amount 

BOV Between Occasion Variability (synonym for IOV - Inter-occasion 
variability) 

COV Covariance 

CORR Correlation 

CTS Clinical Trial Simulation 

CWRES Conditional Weighted Residual 

DDMoRe Drug Disease Model Resources 

DoW Description of Work 

DV Dependent Variable 

EFPIA European Federation of Pharmaceutical Industries and Associations 

EMA European Medicines Agency 

EPS Epsilon - Residual Unexplained Variability random effect 

ETA Empirical Bayes prediction of the inter-individual random effect in a 
PK or PD parameter 

FDA Food and Drug Administration 

FIS Framework Integration Service 

ID Individual 

IDV Independent variable 

II Inter-dose Interval 

IMI Innovative Medicines Initiative 

IMI-JU Innovative Medicines Initiative Joint Undertaking 

IOF Interoperability framework 

IPRED Individual Prediction 

IWRES Individual Weighted Residual 

MDL Model Description Language 
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MDL-IDE Modelling Definition Language Integrated Development Environment 

MDV Missing Dependent Variable 

MIF Mango Integration Framework 

MOG Modelling Object Group 

NONMEM NONLinear Mixed Effects Modelling (see Names) 

OBS Observed (value or data) 

PharmML Pharmacometrics Markup Language 

PD Pharmacodynamic 

PK Pharmacokinetic 

PK/PD Pharmacokinetic - Pharmacodynamic modelling 

PRED Population Prediction 

PROV-O Provenance Ontology 

PsN Perl Speaks NONMEM 
 
http://www.uppsala-pharmacometrics.com/software.html 

RDF Resource Description Framework 

RUV Residual Unexplained Variability 

sd Standard Deviation 

SE Standard Error 

SEE Stand-alone Execution Environment 

SO Standard Output 

TEL Task Execution Language. 
The working name within the DDMoRe project for the ddmore R 
package used to perform tasks with MDL and define pharmacometric 
workflow. 

TES Task Execution Server 

var Variance 

VPC Visual Predictive Check 

WP Work Package 

WRES Weighted Residual 

XML Extensible Markup Language 
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11.2 Definitions and System Names 
System Name Description 

Annotation A description attached to a model or element of a model; see RDF triple. 

Bootstrap Bootstrap is a tool for calculating bias, standard errors and confidence intervals 
of parameter estimates. It does so by generating a set of new datasets by 
sampling individuals with replacement from the original dataset, and fitting the 
model to each new dataset 

Connector A piece of software which enables modelling software to communicate with the 
interoperability framework 

Converter A piece of software which enables translation across languages (e.g. mdl to 
pharmML 

End-User A specific user role with privileges to manage only his/her own jobs queues, etc. 

Extensible Markup 
Language (XML) 

An open standard for exchanging structured documents and data over the 
internet that was introduced by the World Wide Web Consortium (W3C). 

Metadata Metadata (metacontent) is defined as data providing information about one or 
more aspects of the data, such as: 

▪ Means of creation of the data 
▪ Purpose of the data 
▪ Time and date of creation 
▪ Creator or author of data 
▪ Placement on a computer network where the data was created 
▪ Standards used 

 

Monolix A software for the analysis of nonlinear mixed effects models 

MDL-IDE Graphical user interface of the Interoperability Framework. It provides a 
framework within which files containing MDL code can be created and edited and 
Modelling & Simulation workflows can be created and executed. 

MDL MDL is the Model Description Language (formerly MCL - Model Coding Language) 
the human writable and human readable language designed to describe 
pharmacometric models. 

MLXTRAN The language used to define models that are executed with Monolix. 

NM-TRAN The language used to define models that are executed with NONMEM. 

NONMEM A software for the analysis of nonlinear mixed effects models. 

http://www.globomax.com/nonmem.htmhttp://www.globomax.com/nonmem.h
tm 

Ontology An organization of some knowledge domain that is hierarchical and contains all 
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the relevant entities and their relations. 

An ontology is used to define the relationships and objects that are used to 
define the RDF Triples that describe the data, models and results with a 
Pharmacometrics Workflow 

R R is a free software environment for statistical computing and graphics. 

https://www.r-project.org/  

RDF Triple An RDF Triple is a statement which relates one object to another. It is composed 
of three parts: 

- the subject - the entity we are describing 
- a predication - the relationship 
- the object - the description 

DDMoRe uses RDF triples to describe models held within the repository, for 
example: 

“MODEL-000034765” “has author” “Lena Friberg” 

Task Execution 
Service (TES) 

Performs job-management within the Interoperability Framework. 

WinBUGS Windows implementation of the BUGS (Bayesian Inference Using Gibbs Sampling) 
project, concerned with flexible software for the Bayesian analysis of complex 
statistical models using Markov chain Monte Carlo (MCMC) methods.  

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtmlhttp://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml 

Pharmacometric 
Workflow 

Tracking the evolution of a model and associated inferences from initial model to 
final model, capturing metadata and annotations that will facilitate creation of a 
run record, audit log, QC and reproducibility of all steps within the workflow. 
Each step in the Pharmacometric workflow may consist of a Task Workflow which 
defines the procedural steps required to perform a sequence of tasks for a given 
model.http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml 

Task Workflow A sequence of tasks and procedural steps which can be captured in a scriptable 
language, like R, facilitating reproducibility of the outputs for a given set of 
inputs. 

Interoperability One stated of the DDMoRe project is to provide the capability to define the 
model once and then use it across a variety of target software tools. We call this 
“Interoperability”. 

Repository Another stated aim of the DDMoRe project is to provide a library platform for 
pre-competitive sharing of models - disease models, drug models etc. We call this 
library the “Repository”. 

PharmML XML based exchange format for encoding of non-linear mixed effect models, trial 
design and modelling steps used in pharmacometrics. URL: pharmml.org 

Standard Output Tool-independent exchange format intended for storage of results in standardised 
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(SO) form, enabling effective data exchange within complex workflows as well as to 
support the user in assessing, reviewing and reporting a modelling step. 
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